SLAS724A September   2008  – November 2014 PCM3070

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  Handling Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics, ADC
    6. 8.6  Electrical Characteristics, Bypass Outputs
    7. 8.7  Electrical Characteristics, Audio DAC Outputs
    8. 8.8  Electrical Characteristics, LDO
    9. 8.9  Electrical Characteristics, Misc.
    10. 8.10 Electrical Characteristics, Logic Levels
    11. 8.11 I2S LJF and RJF Timing in Master Mode (see )
    12. 8.12 I2S LJF and RJF Timing in Slave Mode (see )
    13. 8.13 DSP Timing in Master Mode (see )
    14. 8.14 DSP Timing in Slave Mode (see )
    15. 8.15 I2C Interface Timing
    16. 8.16 SPI Interface Timing (See )
    17. 8.17 Typical Characteristics
      1. 8.17.1 Typical Performance
      2. 8.17.2 Typical Characteristics, FFT
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Device Connections
        1. 10.3.1.1 Digital Pins
          1. 10.3.1.1.1 Multifunction Pins
        2. 10.3.1.2 Analog Pins
      2. 10.3.2 Analog Audio I/O
        1. 10.3.2.1 Analog Bypass
        2. 10.3.2.2 ADC Bypass Using Mixer Amplifiers
        3. 10.3.2.3 Headphone Output
        4. 10.3.2.4 Line Outputs
      3. 10.3.3 ADC
        1. 10.3.3.1 ADC Processing
          1. 10.3.3.1.1 ADC Processing Blocks
      4. 10.3.4 DAC
        1. 10.3.4.1 DAC Processing Blocks — Overview
      5. 10.3.5 Digital Audio IO Interface
      6. 10.3.6 Clock Generation and PLL
      7. 10.3.7 Control Interfaces
        1. 10.3.7.1 I2C Control
        2. 10.3.7.2 SPI Control
    4. 10.4 Device Functional Modes
      1. 10.4.1 MiniDSP
      2. 10.4.2 Software
    5. 10.5 Register Map
      1. 10.5.1 Register Map Summary
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
        1. 11.2.1.1 Reference Filtering Capacitor
      2. 11.2.2 Detailed Design Procedures
        1. 11.2.2.1 Analog Input Connection
        2. 11.2.2.2 Analog Output Connection
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Documentation Support
      1. 14.1.1 Related Documentation
    2. 14.2 Trademarks
    3. 14.3 Electrostatic Discharge Caution
    4. 14.4 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Input voltage AVDD to AVSS –0.3 2.2 V
DVDD to DVSS –0.3 2.2 V
IOVDD to IOVSS –0.3 3.9 V
LDOIN to AVSS –0.3 3.9 V
Digital Input voltage IOVDD + 0.3 V
Analog input voltage AVDD + 0.3 V
Operating temperature range –40 85 °C
Junction temperature (TJ Max) 105 °C
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –55 125 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) –2 2 kV
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) –750 750 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

MIN NOM MAX UNIT
LDOIN Power Supply Voltage Range Referenced to AVSS(1) 1.9 3.6 V
AVDD 1.5 1.8 1.95
IOVDD Referenced to IOVSS(1) 1.5 3.6
DVDD(2) Referenced to DVSS(1) 1.8 1.95
PLL Input Frequency Clock divider uses fractional divide
(D > 0), P = 1, DVDD ≥ 1.65V
10 20 MHz
Clock divider uses integer divide
(D = 0), P = 1, DVDD ≥ 1.65V
0.512 20 MHz
MCLK Master Clock Frequency MCLK; Master Clock Frequency; DVDD ≥ 1.65V 50 MHz
MCLK; Master Clock Frequency; DVDD ≥ 1.26V 25
SCL SCL Clock Frequency 400 kHz
Audio input max ac signal swing
(IN1_L, IN1_R, IN2_L, IN2_R, IN3_L, IN3_R)
CM = 0.75 V 0 0.530 0.75 or
AVDD-0.75(3)
Vpeak
CM = 0.9 V 0 0.707 0.9 or
AVDD-0.9(3)
Vpeak
CLout Digital output load capacitance 10 pF
TOPR Operating Temperature Range –40 85 °C
(1) All grounds on board are tied together to prevent voltage differences of more than 0.2V maximum for any combination of ground signals.
(2) At DVDD values lower than 1.65V, the PLL does not function. Refer to the Maximum PCM3070 Clock Frequencies table in the PCM3070 Application Reference Guide(SLAU332) for details on maximum clock frequencies.
(3) Whichever is smaller.

8.4 Thermal Information

THERMAL METRIC(1) PCM3070 UNIT
RHB (QFN)
32 PINS
RθJA Junction-to-ambient thermal resistance 31.4 °C/W
RθJCtop Junction-to-case (top) thermal resistance 21.4
RθJB Junction-to-board thermal resistance 5.4
ψJT Junction-to-top characterization parameter 0.2
ψJB Junction-to-board characterization parameter 5.4
RθJCbot Junction-to-case (bottom) thermal resistance 0.9
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics, ADC

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO ADC
Input signal level (0dB) Single-ended, CM = 0.9V 0.5 VRMS
Device Setup 1kHz sine wave input , Single-ended Configuration
IN1_R to Right ADC and IN1_L to Left ADC,
Rin = 20K, fs = 48kHz,
AOSR = 128, MCLK = 256 x fs,
PLL Disabled; AGC = OFF, Channel Gain = 0dB,
Processing Block = PRB_R1,
SNR Signal-to-noise ratio, A-weighted(1)(2) Inputs ac-shorted to ground 80 93 dB
IN2_R, IN3_R routed to Right ADC and ac-shorted to ground
IN2_L, IN3_L routed to Left ADC and ac-shorted to ground
93
DR Dynamic range A-weighted(1)(2) –60dB full-scale, 1-kHz input signal 92 dB
THD+N Total Harmonic Distortion plus Noise –3 dB full-scale, 1-kHz input signal –85 –70 dB
IN2_R, IN3_R routed to Right ADC
IN2_L, IN3_L routed to Left ADC
–3dB full-scale, 1-kHz input signal
–85
AUDIO ADC
Input signal level (0dB) Single-ended, CM = 0.75V, AVDD = 1.5V 0.375 VRMS
Device Setup 1kHz sine wave input, Single-ended Configuration
IN1_R, IN2_R, IN3_R routed to Right ADC
IN1_L, IN2_L, IN3_L routed to Left ADC
Rin = 20kΩ, fs = 48kHz,
AOSR = 128, MCLK = 256 x fs,
PLL Disabled, AGC = OFF, Channel Gain = 0dB,
Processing Block = PRB_R1
SNR Signal-to-noise ratio, A-weighted (1)(2) Inputs ac-shorted to ground 91 dB
DR Dynamic range A-weighted(1)(2) –60dB full-scale, 1-kHz input signal 90 dB
THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1-kHz input signal –80 dB
AUDIO ADC
Input signal level (0dB) Differential Input, CM = 0.9V 10 mV
Device Setup 1kHz sine wave input, Differential configuration
IN1_L and IN1_R routed to Right ADC
IN2_L and IN2_R routed to Left ADC
Rin = 10K, fs = 48kHz, AOSR = 128
MCLK = 256* fs PLL Disabled
AGC = OFF, Channel Gain = 40dB Processing Block = PRB_R1,
ICN Idle-Channel Noise, A-weighted(1)(2) Inputs ac-shorted to ground, input referred noise 2 μVRMS
AUDIO ADC
Gain Error 1kHz sine wave input , Single-ended configuration
Rin = 20kΩ fs = 48kHz, AOSR = 128,
MCLK = 256 x fs, PLL Disabled
AGC = OFF, Channel Gain = 0dB
Processing Block = PRB_R1,
–0.05 dB
Input Channel Separation 1kHz sine wave input at -3dBFS
Single-ended configuration
IN1_L routed to Left ADC
IN1_R routed to Right ADC, Rin = 20kΩ
AGC = OFF, AOSR = 128,
Channel Gain = 0dB, CM = 0.9V
108 dB
Input Pin Crosstalk 1kHz sine wave input at –3dBFS on IN2_L, IN2_L internally not routed.
IN1_L routed to Left ADC
ac-coupled to ground
115 dB
1kHz sine wave input at –3dBFS on IN2_R,
IN2_R internally not routed.
IN1_R routed to Right ADC
ac-coupled to ground
Single-ended configuration Rin = 20kΩ,
AOSR = 128 Channel, Gain = 0dB, CM = 0.9V
PSRR 217Hz, 100mVpp signal on AVDD,
Single-ended configuration, Rin = 20kΩ,
Channel Gain = 0dB; CM = 0.9V
55 dB
ADC programmable gain amplifier gain Single-Ended, Rin = 10kΩ, PGA gain set to 0dB 0 dB
Single-Ended, Rin = 10kΩ, PGA gain set to 47.5dB 47.5 dB
Single-Ended, Rin = 20kΩ, PGA gain set to 0dB –6 dB
Single-Ended, Rin = 20kΩ, PGA gain set to 47.5dB 41.5 dB
Single-Ended, Rin = 40kΩ, PGA gain set to 0dB –12 dB
Single-Ended, Rin = 40kΩ, PGA gain set to 47.5dB 35.5 dB
ADC programmable gain amplifier step size 1-kHz tone 0.5 dB
(1) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer.
(2) All performance measured with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

8.6 Electrical Characteristics, Bypass Outputs

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG BYPASS TO HEADPHONE AMPLIFIER, DIRECT MODE
Device Setup Load = 16Ω (single-ended), 50pF;
Input and Output CM = 0.9V;
Headphone Output on LDOIN Supply;
IN1_L routed to HPL and IN1_R routed to HPR;
Channel Gain = 0dB
Gain Error –0.8 dB
Noise, A-weighted(1) Idle Channel, IN1_L and IN1_R ac-shorted to ground 3 μVRMS
THD Total Harmonic Distortion 446mVrms, 1kHz input signal –89 dB
ANALOG BYPASS TO LINE-OUT AMPLIFIER, PGA MODE
Device Setup Load = 10kΩ (single-ended), 56pF;
Input and Output CM = 0.9V;
LINE Output on LDOIN Supply;
IN1_L routed to ADCPGA_L and IN1_R routed to ADCPGA_R; Rin = 20kΩ
ADCPGA_L routed to LOL and ADCPGA_R routed to LOR; Channel Gain = 0dB
Gain Error 0.6 dB
Noise, A-weighted(1) Idle Channel,
IN1_L and IN1_R ac-shorted to ground
7 μVRMS
Channel Gain = 40dB,
Input Signal (0dB) = 5mVrms
Inputs ac-shorted to ground, Input Referred
3.4 μVRMS
(1) All performance measured with 20kHz low-pass filter and, where noted, A-weighted filter. Testing without such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

8.7 Electrical Characteristics, Audio DAC Outputs

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT
Device Setup Load = 10kΩ (single-ended), 56pF
Line Output on AVDD Supply
Input and Output CM = 0.9V
DOSR = 128, MCLK = 256 x fs,
Channel Gain = 0dB, word length = 16 bits,
Processing Block = PRB_P1,
Full scale output voltage (0dB) 0.5 VRMS
SNR Signal-to-noise ratio A-weighted(1)(2) All zeros fed to DAC input 87 100 dB
DR Dynamic range, A-weighted(1)(2) –60dB 1kHz input full-scale signal, Word length = 20 bits 100 dB
THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1kHz input signal –83 –70 dB
DAC Gain Error 0 dB, 1kHz input full scale signal 0.3 dB
DAC Mute Attenuation Mute 119 dB
DAC channel separation –1 dB, 1kHz signal, between left and right HP out 113 dB
DAC PSRR 100mVpp, 1kHz signal applied to AVDD 73 dB
100mVpp, 217Hz signal applied to AVDD 77 dB
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT
Device Setup Load = 10kΩ (single-ended), 56pF
Line Output on AVDD Supply
Input and Output CM = 0.75V; AVDD = 1.5V
DOSR = 128
MCLK = 256 * fs
Channel Gain = –2dB
word length = 20 bits
Processing Block = PRB_P1
Full scale output voltage (0dB) 0.375 VRMS
SNR Signal-to-noise ratio, A-weighted(1)(2) All zeros fed to DAC input 99 dB
DR Dynamic range, A-weighted(1)(2) –60dB 1 kHz input full-scale signal 97 dB
THD+N Total Harmonic Distortion plus Noise –1 dB full-scale, 1-kHz input signal –85 dB
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT
Device Setup Load = 16Ω (single-ended), 50pF
Headphone Output on AVDD Supply,
Input and Output CM = 0.9V, DOSR = 128,
MCLK = 256 * fs, Channel Gain = 0dB
word length = 16 bits;
Processing Block = PRB_P1
Full scale output voltage (0dB) 0.5 VRMS
SNR Signal-to-noise ratio, A-weighted(1)(2) All zeros fed to DAC input 87 100 dB
DR Dynamic range, A-weighted(1)(2) –60dB 1kHz input full-scale signal, Word Length = 20 bits 99 dB
THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1kHz input signal –83 –70 dB
DAC Gain Error 0dB, 1kHz input full scale signal –0.3 dB
DAC Mute Attenuation Mute 122 dB
DAC channel separation –1dB, 1kHz signal, between left and right HP out 110 dB
DAC PSRR 100mVpp, 1kHz signal applied to AVDD 73 dB
100mVpp, 217Hz signal applied to AVDD 78 dB
Power Delivered RL = 16Ω, Output Stage on AVDD = 1.8V
THDN < 1%, Input CM = 0.9V,
Output CM = 0.9V
15 mW
RL = 16Ω Output Stage on LDOIN = 3.3V,
THDN < 1% Input CM = 0.9V,
Output CM = 1.65V
64
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT
Device Setup Load = 16Ω (single-ended), 50pF,
Headphone Output on AVDD Supply,
Input and Output CM = 0.75V; AVDD = 1.5V,
DOSR = 128, MCLK = 256 * fs,
Channel Gain = –2dB, word length = 20-bits;
Processing Block = PRB_P1,
Full scale output voltage (0dB) 0.375 VRMS
SNR Signal-to-noise ratio, A-weighted(1)(2) All zeros fed to DAC input 99 dB
DR Dynamic range, A-weighted(1)(2) -60dB 1kHz input full-scale signal 98 dB
THD+N Total Harmonic Distortion plus Noise –1dB full-scale, 1kHz input signal –83 dB
AUDIO DAC – MONO DIFFERENTIAL HEADPHONE OUTPUT
Device Setup Load = 32Ω (differential), 50pF,
Headphone Output on LDOIN Supply
Input CM = 0.75V, Output CM = 1.5V,
AVDD = 1.8V, LDOIN = 3.0V, DOSR = 128
MCLK = 256 * fs, Channel (headphone driver) Gain = 5dB for full scale output signal,
word length = 16 bits,
Processing Block = PRB_P1,
Full scale output voltage (0dB) 1778 mVRMS
SNR Signal-to-noise ratio, A-weighted(1)(2) All zeros fed to DAC input 98 dB
DR Dynamic range, A-weighted(1)(2) –60dB 1kHz input full-scale signal 96 dB
THD Total Harmonic Distortion –3dB full-scale, 1kHz input signal –82 dB
Power Delivered RL = 32Ω, Output Stage on LDOIN = 3.3V,
THDN < 1%, Input CM = 0.9V,
Output CM = 1.65V
136 mW
RL = 32Ω Output Stage on LDOIN = 3.0V,
THDN < 1% Input CM = 0.9V,
Output CM = 1.5V
114 mW
(1) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer.
(2) All performance measured with 20kHz low-pass filter and, where noted, A-weighted filter. Testing without such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

8.8 Electrical Characteristics, LDO

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LOW DROPOUT REGULATOR (AVdd)
Output Voltage LDOMode = 1, LDOIN > 1.95V 1.67 V
LDOMode = 0, LDOIN > 2.0V 1.72
LDOMode = 2, LDOIN > 2.05V 1.77
Output Voltage Accuracy ±2%
Load Regulation Load current range 0 to 50mA 15 mV
Line Regulation Input Supply Range 1.9V to 3.6V 5 mV
Decoupling Capacitor 1 μF
Bias Current 60 μA

8.9 Electrical Characteristics, Misc.

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
REFERENCE
Reference Voltage Settings CMMode = 0 (0.9V) 0.9 V
CMMode = 1 (0.75V) 0.75
Reference Noise CM = 0.9V, A-weighted, 20Hz to 20kHz bandwidth, Cref = 10μF 1 μVRfcMS
Decoupling Capacitor 1 10 μF
miniDSP(1)
Maximum miniDSP clock frequency - ADC DVDD = 1.65V 55.3 MHz
Maximum miniDSP clock frequency - DAC DVDD = 1.65V 55.3 MHz
Shutdown Current
Device Setup Coarse AVdd supply turned off, LDO_select held at ground, No external digital input is toggled
I(DVDD) 0.9 μA
I(IOVDD) 13 nA
(1) miniDSP clock speed is specified by design and not tested in production.

8.10 Electrical Characteristics, Logic Levels(1)

At 25°C, AVDD, DVDD, IOVDD = 1.8V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LOGIC FAMILY CMOS
VIH Logic Level IIH = 5 μA, IOVDD > 1.6V 0.7 × IOVDD V
IIH = 5μA, 1.2V ≤ IOVDD < 1.6V 0.9 × IOVDD V
IIH = 5μA, IOVDD < 1.2V IOVDD V
VIL IIL = 5 μA, IOVDD > 1.6V –0.3 0.3 × IOVDD V
IIL = 5μA, 1.2V ≤ IOVDD < 1.6V 0.1 × IOVDD V
IIL = 5μA, IOVDD < 1.2V 0 V
VOH IOH = 2 TTL loads 0.8 × IOVDD V
VOL IOL = 2 TTL loads 0.1 × IOVDD V
Capacitive Load 10 pF
(1) Applies to all DI, DO, and DIO pins shown in Pin Configuration and Functions.

8.11 I2S LJF and RJF Timing in Master Mode (see Figure 1)

IOVDD = 1.8V IOVDD = 3.3V UNIT
MIN MAX MIN MAX
td(WS) WCLK delay 30 20 ns
td(DO-WS) WCLK to DOUT delay (For LJF Mode only) 20 20 ns
td(DO-BCLK) BCLK to DOUT delay 22 20 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 24 12 ns
tf Fall time 24 12 ns
master_tim_los585.gif
All specifications at 25°C, DVdd = 1.8V
Figure 1. I2S LJF and RJF Timing in Master Mode

8.12 I2S LJF and RJF Timing in Slave Mode (see Figure 2)

IOVDD = 1.8V IOVDD = 3.3V UNIT
MIN MAX MIN MAX
tH(BCLK) BCLK high period 35 35 ns
tL(BCLK) BCLK low period 35 35 ns
ts(WS) WCLK setup 8 8 ns
th(WS) WCLK hold 8 8 ns
td(DO-WS) WCLK to DOUT delay (For LJF mode only) 20 20 ns
td(DO-BCLK) BCLK to DOUT delay 22 22 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 4 4 ns
tf Fall time 4 4 ns
i2sljfrlf_los585.gifFigure 2. I2S LJF and RJF Timing in Slave Mode

8.13 DSP Timing in Master Mode (see Figure 3)

IOVDD = 1.8V IOVDD = 3.3V UNIT
MIN MAX MIN MAX
td(WS) WCLK delay 30 20 ns
td(DO-BCLK) BCLK to DOUT delay 22 20 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 24 12 ns
tf Fall time 24 12 ns
dsp_tim_los585.gif
All specifications at 25°C, DVdd = 1.8V
Figure 3. DSP Timing in Master Mode

8.14 DSP Timing in Slave Mode (see Figure 4)

IOVDD = 1.8V IOVDD = 3.3V UNIT
MIN MAX MIN MAX
tH(BCLK) BCLK high period 35 35 ns
tL(BCLK) BCLK low period 35 35 ns
ts(WS) WCLK setup 8 8 ns
th(WS) WCLK hold 8 8 ns
td(DO-BCLK) BCLK to DOUT delay 22 22 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 4 4 ns
tf Fall time 4 4 ns
dsp_slave_los585.gifFigure 4. DSP Timing in Slave Mode

8.15 I2C Interface Timing

Standard-Mode Fast-Mode UNIT
MIN TYP MAX MIN TYP MAX
fSCL SCL clock frequency 0 100 0 400 kHz
tHD;STA Hold time (repeated) START condition. After this period, the first clock pulse is generated. 4.0 0.8 μs
tLOW LOW period of the SCL clock 4.7 1.3 μs
tHIGH HIGH period of the SCL clock 4.0 0.6 μs
tSU;STA Setup time for a repeated START condition 4.7 0.8 μs
tHD;DAT Data hold time: For I2C bus devices 0 3.45 0 0.9 μs
tSU;DAT Data set-up time 250 100 ns
tr SDA and SCL Rise Time 1000 20+0.1Cb 300 ns
tf SDA and SCL Fall Time 300 20+0.1Cb 300 ns
tSU;STO Set-up time for STOP condition 4.0 0.8 μs
tBUF Bus free time between a STOP and START condition 4.7 1.3 μs
Cb Capacitive load for each bus line 400 400 pF
(1) These parameters are based on characterization and are not tested in production.
td_i2c_los585.gifFigure 5. I2C Interface Timing

8.16 SPI Interface Timing (See Figure 6)

IOVDD = 1.8V IOVDD = 3.3V UNIT
MIN TYP MAX MIN TYP MAX
tsck SCLK Period(1) 100 50 ns
tsckh SCLK Pulse width High 50 25 ns
tsckl SCLK Pulse width Low 50 25 ns
tlead Enable Lead Time 30 20 ns
ttrail Enable Trail Time 30 20 ns
td;seqxfr Sequential Transfer Delay 40 20 ns
ta Slave DOUT access time 40 20 ns
tdis Slave DOUT disable time 40 20 ns
tsu DIN data setup time 15 10 ns
th(DIN) DIN data hold time 15 10 ns
tv(DOUT) DOUT data valid time 25 18 ns
tr SCLK Rise Time 4 4 ns
tf SCLK Fall Time 4 4 ns
if_tim_los585.gif
At 25°C, DVdd = 1.8V
Figure 6. SPI Interface Timing Diagram

8.17 Typical Characteristics

8.17.1 Typical Performance

snr_g_los585.gifFigure 7. ADC SNR vs Channel Gain
thd2_hop_los585.gifFigure 9. Total Harmonic Distortion vs Headphone Output Power
dov_ld_los585.gifFigure 11. LDO Dropout Voltage vs Load Current
thd_hop_los585.gifFigure 8. Total Harmonic Distortion vs Headphone Output Power
snr_op_set_los585.gifFigure 10. Headphone SNR and Output Power vs Output Common Mode Setting
vo_ld_los585.gifFigure 12. LDO Load Response

8.17.2 Typical Characteristics, FFT

pwr_f_los585.gifFigure 13. Single Ended Line Input to ADC FFT at -1dBr vs Frequency
pwr3_f_los585.gifFigure 15. DAC Playback to Line-out FFT at -1dBFS vs Frequency
anabypass2_f_los585.gifFigure 17. Line Input to Line-out FFT at 446mVrms vs Frequency
pwr2_f_los585.gifFigure 14. Playback to Headphone FFT at -1dBFS vs Frequency
anabypass_f_los585.gifFigure 16. Line Input to Headphone FFT at 446mVrms vs Frequency