SLLSEH7B December   2013  â€“ June 2016 SN65LVPE512

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
      1. 6.8.1 Case I Fixed Output and Variable Input Trace
      2. 6.8.2 Case II Fixed Input and Variable Output Trace+ 3-m Cable
      3. 6.8.3 Case III Fixed Input and Variable Output Trace (No Cable)
  7. Parameter Measurement Information
    1. 7.1 Typical Eye Diagram and Performance Curves
    2. 7.2 Plot 1 Fixed Output Trace +3-m USB 3 Cable With Variable Input Trace
    3. 7.3 Plot 2 Fixed Input Trace With Variable Output Trace and +3-m USB 3.0 Cable
    4. 7.4 Plot 3 Fixed Input Trace With Variable Output Trace and (No Cable)
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Controller- and Connector-Side Pins
      2. 8.3.2 Programmable EQ, De-Emphasis and Amplitude Swing
      3. 8.3.3 Receiver Detection
        1. 8.3.3.1 At Power Up or Reset
        2. 8.3.3.2 During U2, U3 Link State
      4. 8.3.4 Electrical Idle Support
      5. 8.3.5 Signal Control Pin Setting
    4. 8.4 Device Functional Modes
      1. 8.4.1 Low Power Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage(2) VCC –0.5 4 V
Voltage Differential I/O –0.5 4 V
Control I/O –0.5 VCC + 0.5 V
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to network ground terminal.
(3) Tested in accordance with JEDEC Standard 22, Test Method A115-A

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±5000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
Machine model(3) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VCC Supply voltage 3 3.3 3.6 V
CCOUPLING AC-coupling capacitor 75 200 nF
Operating free-air temperature –40 85 °C
DEVICE PARAMETERS
ICC Supply current EN_RXD, RSVD, EQ cntrl = NC,
K28.5 pattern at 5 Gbps, VID = 1000mVp-p
100 120 mA
ICCRx.Detect In Rx.Detect mode 2 5
ICCsleep EN_RXD = GND 0.01 0.1
ICCU2-U3 Link in USB low power state 21
Maximum data rate 5 Gbps
tENB Device enable time Sleep mode exit time EN_RXD L → H
With Rx termination present
100 µs
tDIS Device disable time Sleep mode entry time EN_RXD H → L 2 µs
TRX.DETECT Rx.Detect start event Power-up time 100 µs
CONTROL LOGIC
VIH High level input voltage 2.8 VCC V
VIL Low level input voltage –0.3 0.5 V
VHYS Input hysteresis 150 mV
IIH High level input current OSx, EQx, DEx = VCC 30 µA
EN_RXD = VCC 1
RSVD = VCC 30
IIL Low level input current OSx, EQx, DEx = GND –30 µA
EN_RXD = GND –30
RSVD = GND –1

6.4 Thermal Information

THERMAL METRIC(1) SN65LVPE512 UNIT
RGE (VQFN) RMQ (WQFN)
24 PINS 24 PINS
RθJA Junction-to-ambient thermal resistance 47.5 41.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 51.6 37 °C/W
RθJB Junction-to-board thermal resistance 24.6 11.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 6.4 6.4 °C/W
ΨJT Junction-to-top characterization parameter 1.4 0.5 °C/W
ΨJB Junction-to-board characterization parameter 24.6 11.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PD Device power dissipation RSVD, EN_RXD, EQ cntrl pins = NC,
K28.5 pattern at 5 Gbps, VID = 1000 mVp-p
330 450(5) mW
PSlp Device power dissipation in sleep mode EN_RXD = GND 0.03 0.4 mW
RECEIVER AC/DC
Vindiff_p-p RX1, RX2 input voltage swing AC-coupled differential RX peak to peak signal 100 1200 mVpp
VCM_RX RX1, RX2 common-mode voltage 3.3 V
VinCOM_P RX1, RX2 AC peak common-mode voltage Measured at Rx pins with termination enabled 150 mVP
ZCM_RX DC common-mode impedance 18 26 30 Ω
Zdiff_RX DC differential input impedance 72 80 120 Ω
ZRX_High_IMP+ DC Input high impedance Device in sleep mode Rx termination not powered measured with respect to GND over 500 mV maximum 50 85
VRX-LFPS-DETpp Low frequency periodic signaling (LFPS) detect threshold Measured at receiver pin, below minimum output is squelched, above max input signal is passed to output 100 300 mVpp
RLRX-DIFF Differential return loss 50 MHz – 1.25 GHz 10 11 dB
1.25 GH – 2.5 GHz 6 7
RLRX-CM Common-mode return loss 50 MHz – 2.5 GHz 11 13 dB
TRANSMITTER AC/DC
VTXDIFF_TB_P-P Differential peak-to-peak output voltage
(VID = 800, 1200 mVpp, 5 Gbps)
RL = 100 Ω ±1%, DEx, OSx = NC,
Transition Bit
900 1241 1500 mV
RL = 100 Ω ±1%, DEx = NC, OSx = GND
Transition Bit
1105
RL = 100 Ω ±1%, DEx = NC, OSx = VCC
Transition Bit
1324
VTXDIFF_NTB_P-P RL = 100 Ω ±1%, DEx=NC, OSx = 0,1,NC
Non-Transition Bit
1241 mV
RL = 100 Ω ±1%, DEx=0 OSx = 0,1,NC
Non-Transition Bit
866
RL = 100 Ω ±1%, DEx=1 OSx = 0,1,NC
Non-Transition Bit
691
DE De-emphasis level OS1,2 = NC (for OS1, 2 = 1 and 0 see Table 4) DE1/DE2 = NC 0 dB
DE1/DE2 = 0 –3
DE1/DE2 = 1 –5
TDE De-emphasis width 0.85 UI
Zdiff_TX DC differential impedance 72 90 120 Ω
ZCM_TX DC common-mode impedance Measured w.r.t to AC ground over 0 mV to 500 mV 18 23 30 Ω
RLdiff_TX Differential return loss f = 50 MHz – 1.25 GHz 9 10 dB
f = 1.25 GHz – 2.5 GHz 6 7
RLCM_TX Common-mode return loss f = 50 MHz – 2.5 GHz 11 12 dB
ITX_SC TX short circuit current TX± shorted to GND 60 mA
VTX_CM_DC Transmitter DC common-mode voltage OSx = NC 2 2.6 3 V
VTX_CM_AC_Active TX AC common-mode voltage active 30 100 mVpp
VTX_idle_diff-AC-pp Electrical idle differential peak to peak output voltage HPF to remove DC 0 10 mVpp
VTX_CM_DeltaU1-U0 Absolute delta of DC CM voltage during active and idle states 35 200 mV
VTX_idle_diff-DC DC Electrical idle differential output voltage Voltage must be lowpass filtered to remove any AC component 0 10 mV
Vdetect Voltage change to allow receiver detect Positive voltage to sense receiver termination 600 mV
CTX Tx input capacitance to GND At 2.5 GHz 1.25 pF
(1) Includes RJ at 10–12 BER
(2) Determininstic jitter measured with K28.5 pattern, Random jitter measured with K28.5 pattern at the ends of reference channel, VID = 1000 mVpp, 5 Gbps, –3.5-dB DE from source
(3) Rj calculated as 14.069 times the RMS random jitter for 10–12 BER
(4) UI = 200 ps
(5) The maximum rating is simulated under 3.6-V VCC.

6.6 Timing Requirements

MIN NOM MAX UNIT
tR, tF Output rise and fall time 20% to 80% of differential voltage measured 1 inch from the output pin 30 65 ps
tRF_MM Output rise and fall time mismatch 20% to 80% of differential voltage measured 1 inch from the output pin 1.5 20 ps
Tdiff_LH, Tdiff_HL Differential propagation delay De-Emphasis = –3.5 dB (CH 0 and CH 1). Propagation delay between 50%
level at input and output
305 370 ps
tidleEntry, tidleExit Idle entry and exit times See Figure 2 4 6 ns

6.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
TTX-EYE (1) (2) Total jitter (Tj) at point A Device setting: OS1 = L,
DE1 = –6 dB, EQ1 = 7 dB
0.23 0.5 UI(4)pp
DJTX (2) Deterministic jitter (Dj) 0.14 0.3
RJTX (2) (3) Random jitter (Rj) 0.08 0.2
TTX-EYE (1) (2) Total jitter (Tj) at point B Device setting: OS2 = H,
DE2 = –6 dB, EQ2 = 7 dB
0.15 0.5 UI(4)Pp
DJTX (2) Deterministic jitter (Dj) 0.07 0.3
RJTX (2) (3) Random jitter (Rj) 0.08 0.2
SN65LVPE512 prop_dly_llse79.gif Figure 1. Propagation Delay
SN65LVPE512 elec_idle_llse79.gif Figure 2. Electrical Idle Mode Exit and Entry Delay
SN65LVPE512 rise_fall_t_llse79.gif Figure 3. Output Rise and Fall Times
SN65LVPE512 jitter_meas_llseh7.gif Figure 4. Jitter Measurement Setup
SN65LVPE512 op_de_emph_SLLSEH7.gif Figure 5. Output De-Emphasis Levels OSx = NC

6.8 Typical Characteristics

Table 1. Case I Fixed Output and Variable Input Trace

GRAPH TITLE FIGURE NUMBER
DE = 0 dB, EQ = 0 dB, Input = 4 inches, Output = 4 inches + 3-m Cable Figure 6
DE = 0 dB, EQ = 0 dB, Input = 8 inches, Output = 4 inches + 3-m Cable Figure 7
DE = 0 dB, EQ = 0 dB, Input = 12 inches, Output = 4 inches + 3-m Cable Figure 9
DE = 0 dB, EQ = 0 dB, Input = 16 inches, Output = 4 inches + 3-m Cable Figure 9
DE = 0 dB, EQ = 0 dB, Input = 20 inches, Output = 4 inches + 3-m Cable Figure 10
DE = 0 dB, EQ = 7 dB, Input = 24 inches, Output = 4 inches + 3-m Cable Figure 11
DE = 0 dB, EQ = 7 dB, Input = 32 inches, Output = 4 inches + 3-m Cable Figure 12
DE = 0 dB, EQ = 7 dB, Input = 36 inches, Output = 4 inches + 3-m Cable Figure 13
DE = 0 dB, EQ = 15 dB, Input = 36 inches, Output = 4 inches + 3-m Cable Figure 14
DE = 0 dB, EQ = 15 dB, Input = 48 inches, Output = 4 inches + 3-m Cable Figure 15

Table 2. Case II Fixed Input and Variable Output Trace+ 3m Cable

GRAPH TITLE FIGURE NUMBER
DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 4 inches + 3-m Cable Figure 16
DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 8 inches + 3-m Cable Figure 17
DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 12 inches + 3-m Cable Figure 18
DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 16 inches + 3-m Cable Figure 19
DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 20 inches + 3-m Cable Figure 20

Table 3. Case III Fixed Input and Variable Output Trace (No Cable)

GRAPH TITLE FIGURE NUMBER
DE = 0 dB, EQ = 7 dB, Input = 12 Inches, Output = 8 Inches Figure 21
DE = 0 dB, EQ = 7 dB, Input = 12 Inches, Output = 32 Inches Figure 22
DE = 0 dB, EQ = 7 dB, Input = 12 Inches, Output = 36 Inches Figure 23
DE = –3 dB, EQ = 7 dB, Input = 12 Inches, Output = 36 Inches Figure 24
DE = –5 dB, EQ = 7 dB, Input = 12 Inches, Output = 40 Inches Figure 25
DE = –5 dB, EQ = 7 dB, Input = 12 Inches, Output = 44 Inches Figure 26

6.8.1 Case I Fixed Output and Variable Input Trace

SN65LVPE512 eye_pat1_llse79.gif Figure 6. DE = 0 dB, EQ = 0 dB, Input = 4 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat3_llse79.gif Figure 8. DE = 0 dB, EQ = 0 dB, Input = 12 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat5_llse79.gif Figure 10. DE = 0 dB, EQ = 0 dB, Input = 20 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat7_llse79.gif Figure 12. DE = 0 dB, EQ = 7 dB, Input = 32 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat9_llse79.gif Figure 14. DE = 0 dB, EQ = 15 dB, Input = 36 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat2_llse79.gif Figure 7. DE = 0 dB, EQ = 0 dB, Input = 8 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat4_llse79.gif Figure 9. DE = 0 dB, EQ = 0 dB, Input = 16 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat6_llse79.gif Figure 11. DE = 0 dB, EQ = 7 dB, Input = 24 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat8_llse79.gif Figure 13. DE = 0 dB, EQ = 7 dB, Input = 36 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat10_llse79.gif Figure 15. DE = 0 dB, EQ = 15 dB, Input = 48 inches, Output = 4 inches + 3-m Cable

6.8.2 Case II Fixed Input and Variable Output Trace+ 3-m Cable

SN65LVPE512 eye_pat11_llse79.gif Figure 16. DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 4 inches + 3-m Cable
SN65LVPE512 eye_pat13_llse79.gif Figure 18. DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 12 inches + 3-m Cable
SN65LVPE512 eye_pat15_llse79.gif Figure 20. DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 20 inches + 3-m Cable
SN65LVPE512 eye_pat12_llse79.gif Figure 17. DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 8 inches + 3-m Cable
SN65LVPE512 eye_pat14_llse79.gif Figure 19. DE = 0 dB, EQ = 7 dB, Input = 12 inches, Output = 16 inches + 3-m Cable

6.8.3 Case III Fixed Input and Variable Output Trace (No Cable)

SN65LVPE512 eye_pat16_llse79.gif Figure 21. DE = 0 dB, EQ = 7 dB, Input = 12 Inches, Output = 8 Inches
SN65LVPE512 eye_pat18_llse79.gif Figure 23. DE = 0 dB, EQ = 7 dB, Input = 12 Inches, Output = 36 Inches
SN65LVPE512 eye_pat20_llse79.gif Figure 25. DE = –5 dB, EQ = 7 dB, Input = 12 Inches, Output = 40 Inches
SN65LVPE512 eye_pat17_llse79.gif Figure 22. DE = 0 dB, EQ = 7 dB, Input = 12 Inches, Output = 32 Inches
SN65LVPE512 eye_pat19_llse79.gif Figure 24. DE = –3 dB, EQ = 7 dB, Input = 12 Inches, Output = 36 Inches
SN65LVPE512 eye_pat21_llse79.gif Figure 26. DE = –5 dB, EQ = 7 dB, Input = 12 Inches, Output = 44 Inches