SCLS407N April   1998  – December 2023 SN74LV373A

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements, VCC = 2.5 V ± 0.2 V
    7. 5.7  Timing Requirements, VCC = 3.3 V ± 0.3 V
    8. 5.8  Timing Requirements, VCC = 5 V ± 0.5 V
    9. 5.9  Switching Characteristics, VCC = 2.5 V ± 0.2 V
    10. 5.10 Switching Characteristics, VCC = 3.3 V ± 0.3 V
    11. 5.11 Switching Characteristics, VCC = 5 V ± 0.5 V
    12. 5.12 Noise Characteristics
    13. 5.13 Operating Characteristics
    14. 5.14 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 22
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3.     Power Supply Recommendations
    4. 8.3 Layout
      1. 8.3.1 Layout Guidelines
      2. 8.3.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Community Resources
    3. 9.3 Trademarks
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DGV|20
  • DB|20
  • NS|20
  • DGS|20
  • DW|20
  • PW|20
  • RGY|20
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Abstract

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Section 5.3 table.

Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μF is recommended. If there are multiple VCC pins, 0.01 μF or 0.022 μF is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μF and
1 μF are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.