SCLS457E February   2001  – March 2023 SN74LV393A

PRODMIX  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Timing Requirements, VCC = 2.5 V ± 0.2 V
    7. 6.7  Timing Requirements, VCC = 3.3 V ± 0.3 V
    8. 6.8  Timing Requirements, VCC = 5 V ± 0.5 V
    9. 6.9  Switching Characteristics, VCC = 2.5 V ± 0.2 V
    10. 6.10 Switching Characteristics, VCC = 3.3 V ± 0.3 V
    11. 6.11 Switching Characteristics, VCC = 5 V ± 0.5 V
    12. 6.12 Timing Diagrams
    13. 6.13 Noise Characteristics
    14. 6.14 Operating Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Power Supply Recommendations
    2. 9.2 Layout
      1. 9.2.1 Layout Guidelines
        1. 9.2.1.1 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|14
  • DB|14
  • DGV|14
  • PW|14
  • NS|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Absolute Maximum Ratings section. Each VCC terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1-μF capacitor; if there are multiple VCC terminals, then TI recommends a 0.01-μF or 0.022-μF capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μF and 1 μF are commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for best results.