SLOS217I July   1998  – December 2024 THS3001

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Recommended Feedback and Gain Resistor Values
      2. 7.1.2 Noise Calculations
      3. 7.1.3 Slew Rate
      4. 7.1.4 Offset Voltage
    2. 7.2 Typical Applications
      1. 7.2.1 General Configurations
      2. 7.2.2 Driving a Capacitive Load
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 PCB Design Considerations
        2. 7.4.1.2 Thermal Considerations
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Evaluation Board
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DGN|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

at TA = 25°C, RL = 150Ω, and RF = 1kΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS(1) MIN TYP MAX UNIT
DYNAMIC PERFORMANCE
BW Small-signal bandwidth (-3dB) G = 1, RF = 1kΩ VCC = ±5V 330 MHz
VCC= ±15V 420
G = 2 VCC = ±5V,
RF = 750Ω
300
VCC = ±15V,
RF = 680Ω
385
G = 5 VCC = ±15V,
RF = 560Ω
350
Bandwidth for 0.1dB flatness G = 2 VCC = ±5V,
RF = 750Ω
65
VCC = ±15V,
RF = 680Ω
55
Full power bandwidth(2) VCC = ±5V,
VO(PP) = 4V,
RL = 500Ω
G = –5 65
G = 5 62
VCC = ±15V,
VO(PP) = 20V,
RL = 500Ω
G = –5 32
G = 5 31
SR Slew rate(1) VCC = ±5V,
VO(PP) = 4V
G = –5 1700 V/μs
G = 5 1300
VCC = ±15V,
VO(PP) = 20V
G = –5 6500
G = 5 6300
ts Settling time to 0.1%
Gain = –1

VCC = ±15V,
0V to 10V Step
40 ns
VCC = ±5V,
0V to 2V Step,
25
NOISE AND DISTORTION PERFORMANCE
THD Total harmonic distortion VCC = ±15V, VO(PP) = 2V, G = 2, fc = 10MHz –80 dBc
Vn Input voltage noise VCC = ±5V or ±15V G = 2, f = 10kHz 1.6 nV/√Hz
Inp Noninverting input current noise VCC = ±5V or ±15V, f = 10kHz, G = 2 13 pA/√Hz
Inn Inverting input current noise VCC = ±5V or ±15V, f = 10kHz, G = 2 16 pA/√Hz
DC PERFORMANCE
VIO Input offset voltage VCC = ±5V or ±15V TA = 25°C 1 3 mV
TA = full range 4
Input offset voltage drift VCC = ±5V or ±15V 5 μV/°C
ZOL Open loop transresistance VCC = ±5V, VO = ±2.5V, RL = 1kΩ 1.3 MΩ
VCC = ±15V, VO = ±7.5V, RL = 1kΩ 2.4
IIB+ Noninverting input bias current VCC = ±5V or ±15V TA = 25°C 2 10 μA
TA = full range 15
IIB– Inverting input bias current VCC = ±5V or ±15V TA = 25°C 1 10 μA
TA = full range 15
INPUT CHARACTERISTICS
VICR Common-mode input voltage range VCC = ±5V ±3 ±3.2 V
VCC = ±15V ±12.9 ±13.2
CMRR Common-mode rejection ratio VCC = ±5V, VCM = ±2.5V 62 70 dB
VCC = ±15V, VCM = ±10V 65 73
RI+ Noninverting input resistance 1.5 MΩ
RI– Inverting input resistance 15
CI Differential input capacitance 7.5 pF
OUTPUT CHARACTERISTICS
VO Output voltage swing VCC = ±5V RL = 150Ω ±2.9 ±3.2 V
RL = 1kΩ ±3 ±3.3
VCC = ±15V RL = 150Ω ±12.1 ±12.8
RL = 1kΩ ±12.8 ±13.1
IO Output current(2) VCC = ±5V, RL = 20Ω 100 mA
VCC = ±15V, RL = 75Ω 85 120
RO Output resistance Open loop at 5MHz 10
POWER SUPPLY
ICC Quiescent current  VCC = ±5V TA = 25°C 5.5 7.5 mA
TA = full range 8.5
VCC = ±15V TA = 25°C 6.6 9
TA = full range 10
VCC = ±18V TA = 25°C 6.9 9.5
TA = full range 10.5
PSRR Power supply rejection ratio VCC = ±5V TA = 25°C 65 76 dB
TA = full range 63
VCC = ±15V TA = 25°C 69 76
TA = full range 67
Full range = 0°C to 70°C for the THS3001C and -40°C to 85°C for the THS3001I.
Observe power dissipation ratings to keep the junction temperature below absolute maximum when the output is heavily loaded or shorted. See Section 7.4.1.2.