SLLSEY3E May   2018  – May 2019 THVD1410 , THVD1450 , THVD1451 , THVD1452

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      THVD1410 and THVD1450 Simplified Schematic
      2.      THVD1451 Simplified Schematic
      3.      THVD1452 Simplified Schematic
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
    2.     Pin Functions
    3.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  ESD Ratings [IEC]
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Thermal Information
    6. 7.6  Power Dissipation
    7. 7.7  Electrical Characteristics
    8. 7.8  Switching Characteristics
    9. 7.9  Typical Characteristics: All Devices
    10. 7.10 Typical Characteristics: THD1450, THVD1451 and THVD1452
    11. 7.11 Typical Characteristics: THVD1410
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagrams
    3. 9.3 Feature Description
    4. 9.4 Device Functional Modes
      1. 9.4.1 Device Functional Modes for THVD1410 and THVD1450
      2. 9.4.2 Device Functional Modes for THVD1451
      3. 9.4.3 Device Functional Modes for THVD1452
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
        1. 10.2.1.1 Data Rate and Bus Length
        2. 10.2.1.2 Stub Length
        3. 10.2.1.3 Bus Loading
        4. 10.2.1.4 Receiver Failsafe
        5. 10.2.1.5 Transient Protection
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
    2. 13.2 Third-Party Products Disclaimer
    3. 13.3 Related Links
    4. 13.4 Receiving Notification of Documentation Updates
    5. 13.5 Community Resources
    6. 13.6 Trademarks
    7. 13.7 Electrostatic Discharge Caution
    8. 13.8 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DGK|8
  • DRB|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

Robust and reliable bus node design often requires the use of external transient protection devices in order to protect against surge transients that may occur in industrial environments. Since these transients have a wide frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be applied during PCB design.

  1. Place the protection circuitry close to the bus connector to prevent noise transients from penetrating your board.
  2. Use VCC and ground planes to provide low-inductance. Note that high-frequency currents tend to follow the path of least impedance and not the path of least resistance.
  3. Design the protection components into the direction of the signal path. Do not force the transient currents to divert from the signal path to reach the protection device.
  4. Apply 100-nF to 220-nF decoupling capacitors as close as possible to the VCC pins of transceiver, UART and/or controller ICs on the board.
  5. Use at least two vias for VCC and ground connections of decoupling capacitors and protection devices to minimize effective via inductance.
  6. Use 1-kΩ to 10-kΩ pull-up and pull-down resistors for enable lines to limit noise currents in theses lines during transient events.
  7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the transceiver and prevent it from latching up.
  8. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient blocking units (TBUs) that limit transient current to less than 1 mA.