SNOSDA5D May 2020 – February 2023 TLV7031-Q1 , TLV7032-Q1 , TLV7034-Q1 , TLV7041-Q1 , TLV7042-Q1 , TLV7044-Q1
PRODUCTION DATA
The oscillation frequency is determined by the resistor and capacitor values. The following section provides details to calculate these component values.
First consider the output of figure Figure 8-7 is high, which indicates the inverted input VC is lower than the noninverting input (VA). This causes the C1 to be charged through R4, and the voltage VC increases until it is equal to the noninverting input. The value of VA at the point is calculated by Equation 7.
If R1 = R2= R3, then VA1 = 2 VCC/ 3
At this time the comparator output trips pulling down the output to the negative rail. The value of VA at this point is calculated by Equation 8.
If R1 = R2 = R3, then VA2 = VCC/3
The C1 now discharges though the R4, and the voltage VCC decreases until it reaches VA2. At this point, the output switches back to the starting state. The oscillation period equals the time duration from 2 VCC / 3 to VCC / 3 then back to 2 VCC / 3, which is given by R4C1 × ln2 for each trip. Therefore, the total time duration is calculated as 2 R4C1 × ln2. The oscillation frequency can be obtained by Equation 9: