SLYS056A August   2024  – September 2024 TMAG5233

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Magnetic Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 SOT-23 Magnetic Flux Density Direction
      2. 7.3.2 Output Type
      3. 7.3.3 Timing
      4. 7.3.4 Hall Element Location
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

As the magnet travels from the starting position (–5mm on X-axis) to the final position (5mm on X-axis), the magnetic flux density seen by the TMAG5233 across the axis of sensitivity changes (see Figure 8-4). Figure 8-5 shows the TMAG5233 output across the same interval.

At the magnet starting position, the TMAG5233 output is high because the magnetic flux density is less than BOP . As the magnet moves along the X-axis towards the sensor, the magnetic flux density crosses the BOP threshold of the TMAG5233 at a displacement of –3.1mm, making the output go low. As the magnet continues to move along the X-axis past the origin, the magnetic flux density begins to decrease. At a displacement of 3.4mm the BRP threshold is crossed and the output goes high.