SBOSA24C July   2023  – January 2025 TMCS1123

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Insulation Specifications
    6. 6.6 Insulation Specifications
    7. 6.7 Electrical Characteristics
    8. 6.8 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Accuracy Parameters
      1. 7.1.1 Sensitivity Error
      2. 7.1.2 Offset Error and Offset Error Drift
      3. 7.1.3 Nonlinearity Error
      4. 7.1.4 Power Supply Rejection Ratio
      5. 7.1.5 Common-Mode Rejection Ratio
      6. 7.1.6 External Magnetic Field Errors
    2. 7.2 Transient Response Parameters
      1. 7.2.1 CMTI, Common-Mode Transient Immunity
    3. 7.3 Safe Operating Area
      1. 7.3.1 Continuous DC or Sinusoidal AC Current
      2. 7.3.2 Repetitive Pulsed Current SOA
      3. 7.3.3 Single Event Current Capability
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Current Input
      2. 8.3.2 Input Isolation
      3. 8.3.3 Ambient Field Rejection
      4. 8.3.4 High-Precision Signal Chain
        1. 8.3.4.1 Temperature Stability
        2. 8.3.4.2 Lifetime and Environmental Stability
      5. 8.3.5 Internal Reference Voltage
      6. 8.3.6 Current-Sensing Measurable Ranges
      7. 8.3.7 Overcurrent Detection
        1. 8.3.7.1 Setting The User Configurable Overcurrent Threshold
          1. 8.3.7.1.1 Setting Overcurrent Threshold Using Power Supply Voltage
          2. 8.3.7.1.2 Setting Overcurrent Threshold Using Internal Reference Voltage
          3. 8.3.7.1.3 Setting Overcurrent Threshold Example
        2. 8.3.7.2 Overcurrent Output Response
        3. 8.3.7.3 Overcurrent Detection MASK Time
      8. 8.3.8 Sensor Diagnostics
        1. 8.3.8.1 Thermal Alert
        2. 8.3.8.2 Sensor Alert
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Down Behavior
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Total Error Calculation Examples
        1. 9.1.1.1 Room-Temperature Error Calculations
        2. 9.1.1.2 Full-Temperature Range Error Calculations
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Nomenclature
    2. 10.2 Device Support
      1. 10.2.1 Development Support
    3. 10.3 Documentation Support
      1. 10.3.1 Related Documentation
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DVG|10
Thermal pad, mechanical data (Package|Pins)

Overcurrent Detection

In addition to the precision analog signal, the TMCS1123 also offers a fast digital overcurrent detection response. The Overcurrent Detection (OCD) circuit provides an open-drain comparator output that can be used to trigger a warning or initiate a system shutdown to prevent damage from excessive current flow caused by short circuits, motor stalls, or other unintended system conditions. This fast digital response can be configured on both bidirectional and unidirectional devices to assert based on a signal that is anywhere from half to over twice the full-scale analog measurement range.

Use of this fast digital output OC instead of the precision analog output VOUT to detect overcurrent events outside the nominal operating current range allows for higher dynamic range with higher sensitivity optimized for the nominal operating current range. Use of this fast digital output OC also allows for lower overall signal noise from lower analog signal bandwidth than often needed when using the analog signal chain to detect fast overcurrent events.