SNIS217C december   2020  – may 2023 TMP139

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Timing Diagrams
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power-Up Sequence
      2. 7.3.2 Power-Down and Device Reset
      3. 7.3.3 Temperature Result and Limits
      4. 7.3.4 Bus Reset
      5. 7.3.5 Interrupt Generation
      6. 7.3.6 Parity Error Check
      7. 7.3.7 Packet Error Check
    4. 7.4 Device Functional Modes
      1. 7.4.1 Conversion Mode
      2. 7.4.2 Serial Address
      3. 7.4.3 I2C Mode Operation
        1. 7.4.3.1 Host I2C Write Operation
        2. 7.4.3.2 Host I2C Read Operation
        3. 7.4.3.3 Host I2C Read Operation in Default Read Address Pointer Mode
        4. 7.4.3.4 Switching from I2C Mode to I3C Basic Mode
      4. 7.4.4 I3C Basic Mode Operation
        1. 7.4.4.1 Host I3C Write Operation without PEC
        2. 7.4.4.2 Host I3C Write Operation with PEC
        3. 7.4.4.3 Host I3C Read Operation without PEC
        4. 7.4.4.4 Host I3C Read Operation with PEC
        5. 7.4.4.5 Host I3C Read Operation in Default Read Address Pointer Mode
      5. 7.4.5 In Band Interrupt
        1. 7.4.5.1 In Band Interrupt Arbitration Rules
        2. 7.4.5.2 In Band Interrupt Bus Transaction
      6. 7.4.6 Common Command Codes Support
        1. 7.4.6.1 ENEC CCC
        2. 7.4.6.2 DISEC CCC
        3. 7.4.6.3 RSTDAA CCC
        4. 7.4.6.4 SETAASA CCC
        5. 7.4.6.5 GETSTATUS CCC
        6. 7.4.6.6 DEVCAP CCC
        7. 7.4.6.7 SETHID CCC
        8. 7.4.6.8 DEVCTRL CCC
      7. 7.4.7 I/O Operation
      8. 7.4.8 Timing Diagrams
    5. 7.5 Programming
      1. 7.5.1 Enabling Interrupt Mechanism
      2. 7.5.2 Clearing Interrupt
    6. 7.6 Register Map
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YAH|6
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Host I3C Write Operation without PEC

As shown in Figure 7-11 and Figure 7-12, an I3C basic write operation is the same as an I2C write operation. For all bytes after the device address field, the 9th bit is the parity bit sent by the host. When the IBI is enabled by the host, it must send the IBI header byte which consists of 7'h7E+R/W=0, before it sends the device address. This allows the participating devices on the bus to arbitrate between themselves if more than one device has an interrupt condition that needs to be communicated to the host.

GUID-1686FB4B-59DC-4004-8CE7-4458221D55B9-low.gifFigure 7-11 I3C Basic Mode Write
GUID-E9B195DB-EE43-4A66-8F83-97D96442380D-low.gifFigure 7-12 I3C Basic Mode Write with IBI Header

If there is a parity error during the data transfer, the device shall discard all the bytes including the byte for which parity error was detected and set the parity error condition. If the host attempts to start a new transaction with a Repeated Start to the same device, then TMP139 shall NACK the device address to indicate an error condition to the host. The host must first clear the parity error condition before performing any new transfer to the TMP139. When IBI is enabled, the device can communicate to the host the error conditions seen, using IBI. However when IBI is not enabled, it is strongly recommended that the host check the error status register to ensure that no parity error was detected on the bus.