SPRSP68C January 2023 – January 2025 TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1
PRODMIX
Refer to the PDF data sheet for device specific package drawings
High-frequency resonant converter design considerations, Part 1
High-frequency resonant converter design considerations, Part 2 Application Report
New Product Update webinar series
(Video)
C2000™ MCUs - Electric vehicle (EV) training videos
(Video)
This collection of C2000™ MCU videos covers electric vehicle (EV)-specific training in both English and Chinese.
CLLLC vs. DAB for EV onboard chargers Application Report
Digitally-Controlled 4-Switch Buck-Boost for Automotive Lighting Using C2000 Real-Time MCU
(Video)
PMP22650 GaN-based, 6.6-kW, bidirectional, onboard charger reference design
The PMP22650 reference design is a 6.6-kW, bidirectional, onboard charger. The design employs a two-phase totem pole PFC and a full-bridge CLLLC converter with synchronous rectification. The CLLLC utilizes both frequency and phase modulation to regulate the output across the required regulation range. The design uses a single processing core inside a TMS320F28388D microcontroller to control both the PFC and CLLLC. Synchronous rectification is implemented via the same microcontroller with Rogowski coil current sensors. High density is achieved through the use of high-speed GaN switches (LMG3522). The PFC is operating at 120 kHz and the CLLLC runs with a variable frequency from 200 kHz to 800 kHz. A peak system efficiency of 96.5% was achieved with an open-frame power density of 3.8 kW/L. While the design calculations were done for a 6.6-kW output power, the design represents a suitable starting point for a 7.x-kW (for example, 7.2-kW to 7.4-kW) rated OBC operating from a 240-V input with a 32-A breaker.
TIDA-01604
98.6% Efficiency, 6.6-kW Totem-Pole PFC Reference Design for HEV/EV Onboard Charger
This reference design functions from a base of silicon carbide (SiC) MOSFETs that are driven by a C2000 microcontroller (MCU) with SiC-isolated gate drivers. The design implements three-phase interleaving and operates in continuous conduction mode (CCM) to achieve a 98.46% efficiency at a 240-V input voltage and 6.6-kW full power. The C2000 controller enables phase shedding and adaptive dead-time control to improve the power factor at light load. The gate driver board (see TIDA-01605) is capable of delivering a 4-A source and 6-A sink peak current. The gate driver board implements a reinforced isolation and can withstand more than 100-V/ns common-mode transient immunity (CMTI). The gate driver board also contains the two-level turnoff circuit, which protects the MOSFET from voltage overshoot during the short-circuit scenario.
TIDUEG2C TIDM-02002 Bidirectional CLLLC resonant dual active bridge (DAB) reference design for HEV/EV onboard charger
The CLLLC resonant DAB with bidirectional power flow capability and soft switching characteristics is an ideal candidate for Hybrid Electric Vehicle/Electric Vehicle (HEV/EV) on-board chargers and energy storage applications. This design illustrates control of this power topology using a C2000™ MCU in closed voltage and closed current-loop mode. The hardware and software available with this design help accelerate
your time to market.
TIDUEG3A TIDM-1022 Valley switching boost power factor correction (PFC) reference design
This reference design illustrates a digital control method to significantly improve Boost Power Factor Correction (PFC) converter performance such as the efficiency and Total Harmonic Distortion (THD) under light load condition where efficiency and THD standards are difficult to meet. This is achieved using the integrated digital control feature of the C2000™ microcontroller (MCU). The design supports phase-shedding, valley-switching, valley-skipping, and Zero Voltage Switching (ZVS) for different load and instantaneous input voltage conditions. The software available with this reference design accelerates time to market.