SPRSP85A April   2024  – September 2024 TMS320F28P550SJ , TMS320F28P559SJ-Q1

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
    1. 3.1 Functional Block Diagram
  5. Device Comparison
    1. 4.1 Related Products
  6. Pin Configuration and Functions
    1. 5.1 Pin Diagrams
    2. 5.2 Pin Attributes
    3. 5.3 Signal Descriptions
      1. 5.3.1 Analog Signals
      2. 5.3.2 Digital Signals
      3. 5.3.3 Power and Ground
      4. 5.3.4 Test, JTAG, and Reset
    4. 5.4 Pin Multiplexing
      1. 5.4.1 GPIO Muxed Pins
      2. 5.4.2 Digital Inputs on ADC Pins (AIOs)
      3. 5.4.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
      4. 5.4.4 GPIO Input X-BAR
      5. 5.4.5 GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR
    5. 5.5 Pins With Internal Pullup and Pulldown
    6. 5.6 Connections for Unused Pins
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings – Commercial
    3. 6.3  ESD Ratings – Automotive
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Power Consumption Summary
      1. 6.5.1 System Current Consumption - VREG Enable - Internal Supply
      2. 6.5.2 System Current Consumption - VREG Disable - External Supply
      3. 6.5.3 Operating Mode Test Description
      4. 6.5.4 Reducing Current Consumption
        1. 6.5.4.1 Typical Current Reduction per Disabled Peripheral
    6. 6.6  Electrical Characteristics
    7. 6.7  Special Considerations for 5V Fail-Safe Pins
    8. 6.8  Thermal Resistance Characteristics for PDT Package
    9. 6.9  Thermal Resistance Characteristics for PZ Package
    10. 6.10 Thermal Resistance Characteristics for PNA Package
    11. 6.11 Thermal Resistance Characteristics for PM Package
    12. 6.12 Thermal Resistance Characteristics for RSH Package
    13. 6.13 Thermal Design Considerations
    14. 6.14 System
      1. 6.14.1  Power Management Module (PMM)
        1. 6.14.1.1 Introduction
        2. 6.14.1.2 Overview
          1. 6.14.1.2.1 Power Rail Monitors
            1. 6.14.1.2.1.1 I/O POR (Power-On Reset) Monitor
            2. 6.14.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor
            3. 6.14.1.2.1.3 VDD POR (Power-On Reset) Monitor
          2. 6.14.1.2.2 External Supervisor Usage
          3. 6.14.1.2.3 Delay Blocks
          4. 6.14.1.2.4 Internal 1.2-V LDO Voltage Regulator (VREG)
          5. 6.14.1.2.5 VREGENZ
        3. 6.14.1.3 External Components
          1. 6.14.1.3.1 Decoupling Capacitors
            1. 6.14.1.3.1.1 VDDIO Decoupling
            2. 6.14.1.3.1.2 VDD Decoupling
        4. 6.14.1.4 Power Sequencing
          1. 6.14.1.4.1 Supply Pins Ganging
          2. 6.14.1.4.2 Signal Pins Power Sequence
          3. 6.14.1.4.3 Supply Pins Power Sequence
            1. 6.14.1.4.3.1 External VREG/VDD Mode Sequence
            2. 6.14.1.4.3.2 Internal VREG/VDD Mode Sequence
            3. 6.14.1.4.3.3 Supply Sequencing Summary and Effects of Violations
            4. 6.14.1.4.3.4 Supply Slew Rate
        5. 6.14.1.5 Power Management Module Electrical Data and Timing
          1. 6.14.1.5.1 Power Management Module Operating Conditions
          2. 6.14.1.5.2 Power Management Module Characteristics
      2. 6.14.2  Reset Timing
        1. 6.14.2.1 Reset Sources
        2. 6.14.2.2 Reset Electrical Data and Timing
          1. 6.14.2.2.1 Reset - XRSn - Timing Requirements
          2. 6.14.2.2.2 Reset - XRSn - Switching Characteristics
          3. 6.14.2.2.3 Reset Timing Diagrams
      3. 6.14.3  Clock Specifications
        1. 6.14.3.1 Clock Sources
        2. 6.14.3.2 Clock Frequencies, Requirements, and Characteristics
          1. 6.14.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
            1. 6.14.3.2.1.1 Input Clock Frequency
            2. 6.14.3.2.1.2 XTAL Oscillator Characteristics
            3. 6.14.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source - Not a Crystal
            4. 6.14.3.2.1.4 X1 Timing Requirements
            5. 6.14.3.2.1.5 AUXCLKIN Timing Requirements
            6. 6.14.3.2.1.6 APLL Characteristics
            7. 6.14.3.2.1.7 XCLKOUT Switching Characteristics - PLL Bypassed or Enabled
            8. 6.14.3.2.1.8 Internal Clock Frequencies
        3. 6.14.3.3 Input Clocks and PLLs
        4. 6.14.3.4 XTAL Oscillator
          1. 6.14.3.4.1 Introduction
          2. 6.14.3.4.2 Overview
            1. 6.14.3.4.2.1 Electrical Oscillator
              1. 6.14.3.4.2.1.1 Modes of Operation
                1. 6.14.3.4.2.1.1.1 Crystal Mode of Operation
                2. 6.14.3.4.2.1.1.2 Single-Ended Mode of Operation
              2. 6.14.3.4.2.1.2 XTAL Output on XCLKOUT
            2. 6.14.3.4.2.2 Quartz Crystal
            3. 6.14.3.4.2.3 GPIO Modes of Operation
          3. 6.14.3.4.3 Functional Operation
            1. 6.14.3.4.3.1 ESR – Effective Series Resistance
            2. 6.14.3.4.3.2 Rneg – Negative Resistance
            3. 6.14.3.4.3.3 Start-up Time
              1. 6.14.3.4.3.3.1 X1/X2 Precondition
            4. 6.14.3.4.3.4 DL – Drive Level
          4. 6.14.3.4.4 How to Choose a Crystal
          5. 6.14.3.4.5 Testing
          6. 6.14.3.4.6 Common Problems and Debug Tips
          7. 6.14.3.4.7 Crystal Oscillator Specifications
            1. 6.14.3.4.7.1 Crystal Oscillator Electrical Characteristics
            2. 6.14.3.4.7.2 Crystal Equivalent Series Resistance (ESR) Requirements
            3. 6.14.3.4.7.3 Crystal Oscillator Parameters
        5. 6.14.3.5 Internal Oscillators
          1. 6.14.3.5.1 INTOSC Characteristics
      4. 6.14.4  Flash Parameters
        1. 6.14.4.1 Flash Parameters 
      5. 6.14.5  RAM Specifications
      6. 6.14.6  ROM Specifications
      7. 6.14.7  Emulation/JTAG
        1. 6.14.7.1 JTAG Electrical Data and Timing
          1. 6.14.7.1.1 JTAG Timing Requirements
          2. 6.14.7.1.2 JTAG Switching Characteristics
          3. 6.14.7.1.3 JTAG Timing Diagram
        2. 6.14.7.2 cJTAG Electrical Data and Timing
          1. 6.14.7.2.1 cJTAG Timing Requirements
          2. 6.14.7.2.2 cJTAG Switching Characteristics
          3. 6.14.7.2.3 cJTAG Timing Diagram
      8. 6.14.8  GPIO Electrical Data and Timing
        1. 6.14.8.1 GPIO – Output Timing
          1. 6.14.8.1.1 General-Purpose Output Switching Characteristics
          2. 6.14.8.1.2 General-Purpose Output Timing Diagram
        2. 6.14.8.2 GPIO – Input Timing
          1. 6.14.8.2.1 General-Purpose Input Timing Requirements
          2. 6.14.8.2.2 Sampling Mode
        3. 6.14.8.3 Sampling Window Width for Input Signals
      9. 6.14.9  Interrupts
        1. 6.14.9.1 External Interrupt (XINT) Electrical Data and Timing
          1. 6.14.9.1.1 External Interrupt Timing Requirements
          2. 6.14.9.1.2 External Interrupt Switching Characteristics
          3. 6.14.9.1.3 External Interrupt Timing
      10. 6.14.10 Low-Power Modes
        1. 6.14.10.1 Clock-Gating Low-Power Modes
        2. 6.14.10.2 Low-Power Mode Wake-up Timing
          1. 6.14.10.2.1 IDLE Mode Timing Requirements
          2. 6.14.10.2.2 IDLE Mode Switching Characteristics
          3. 6.14.10.2.3 IDLE Entry and Exit Timing Diagram
          4. 6.14.10.2.4 STANDBY Mode Timing Requirements
          5. 6.14.10.2.5 STANDBY Mode Switching Characteristics
          6. 6.14.10.2.6 STANDBY Entry and Exit Timing Diagram
          7. 6.14.10.2.7 HALT Mode Timing Requirements
          8. 6.14.10.2.8 HALT Mode Switching Characteristics
          9. 6.14.10.2.9 HALT Entry and Exit Timing Diagram
    15. 6.15 Analog Peripherals
      1. 6.15.1 Block Diagram
      2. 6.15.2 Analog Pins and Internal Connections
      3. 6.15.3 Analog Signal Descriptions
      4. 6.15.4 Analog-to-Digital Converter (ADC)
        1. 6.15.4.1 ADC Configurability
          1. 6.15.4.1.1 Signal Mode
        2. 6.15.4.2 ADC Electrical Data and Timing
          1. 6.15.4.2.1 ADC Operating Conditions
          2. 6.15.4.2.2 ADC Characteristics
          3. 6.15.4.2.3 ADC INL and DNL
          4. 6.15.4.2.4 ADC Performance Per Pin
          5. 6.15.4.2.5 ADC Input Model
          6. 6.15.4.2.6 ADC Timing Diagrams
      5. 6.15.5 Temperature Sensor
        1. 6.15.5.1 Temperature Sensor Electrical Data and Timing
          1. 6.15.5.1.1 Temperature Sensor Characteristics
      6. 6.15.6 Comparator Subsystem (CMPSS)
        1. 6.15.6.1 CMPx_DACL
        2. 6.15.6.2 CMPSS Connectivity Diagram
        3. 6.15.6.3 Block Diagram
        4. 6.15.6.4 CMPSS Electrical Data and Timing
          1. 6.15.6.4.1 CMPSS Comparator Electrical Characteristics
          2.        CMPSS Comparator Input Referred Offset and Hysteresis
          3. 6.15.6.4.2 CMPSS DAC Static Electrical Characteristics
          4. 6.15.6.4.3 CMPSS Illustrative Graphs
          5. 6.15.6.4.4 Buffered Output from CMPx_DACL Operating Conditions
          6. 6.15.6.4.5 Buffered Output from CMPx_DACL Electrical Characteristics
      7. 6.15.7 Buffered Digital-to-Analog Converter (DAC)
        1. 6.15.7.1 Buffered DAC Electrical Data and Timing
          1. 6.15.7.1.1 Buffered DAC Operating Conditions
          2. 6.15.7.1.2 Buffered DAC Electrical Characteristics
      8. 6.15.8 Programmable Gain Amplifier (PGA)
        1. 6.15.8.1 PGA Electrical Data and Timing
          1. 6.15.8.1.1 PGA Operating Conditions
          2. 6.15.8.1.2 PGA Characteristics
    16. 6.16 Control Peripherals
      1. 6.16.1 Enhanced Pulse Width Modulator (ePWM)
        1. 6.16.1.1 Control Peripherals Synchronization
        2. 6.16.1.2 ePWM Electrical Data and Timing
          1. 6.16.1.2.1 ePWM Timing Requirements
          2. 6.16.1.2.2 ePWM Switching Characteristics
          3. 6.16.1.2.3 Trip-Zone Input Timing
            1. 6.16.1.2.3.1 Trip-Zone Input Timing Requirements
            2. 6.16.1.2.3.2 PWM Hi-Z Characteristics Timing Diagram
      2. 6.16.2 High-Resolution Pulse Width Modulator (HRPWM)
        1. 6.16.2.1 HRPWM Electrical Data and Timing
          1. 6.16.2.1.1 High-Resolution PWM Characteristics
      3. 6.16.3 External ADC Start-of-Conversion Electrical Data and Timing
        1. 6.16.3.1 External ADC Start-of-Conversion Switching Characteristics
        2. 6.16.3.2 ADCSOCAO or ADCSOCBO Timing Diagram
      4. 6.16.4 Enhanced Capture (eCAP)
        1. 6.16.4.1 eCAP Block Diagram
        2. 6.16.4.2 eCAP Synchronization
        3. 6.16.4.3 eCAP Electrical Data and Timing
          1. 6.16.4.3.1 eCAP Timing Requirements
          2. 6.16.4.3.2 eCAP Switching Characteristics
      5. 6.16.5 Enhanced Quadrature Encoder Pulse (eQEP)
        1. 6.16.5.1 eQEP Electrical Data and Timing
          1. 6.16.5.1.1 eQEP Timing Requirements
          2. 6.16.5.1.2 eQEP Switching Characteristics
    17. 6.17 Communications Peripherals
      1. 6.17.1 Modular Controller Area Network (MCAN)
      2. 6.17.2 Inter-Integrated Circuit (I2C)
        1. 6.17.2.1 I2C Electrical Data and Timing
          1. 6.17.2.1.1 I2C Timing Requirements
          2. 6.17.2.1.2 I2C Switching Characteristics
          3. 6.17.2.1.3 I2C Timing Diagram
      3. 6.17.3 Power Management Bus (PMBus) Interface
        1. 6.17.3.1 PMBus Electrical Data and Timing
          1. 6.17.3.1.1 PMBus Electrical Characteristics
          2. 6.17.3.1.2 PMBus Fast Plus Mode Switching Characteristics
          3. 6.17.3.1.3 PMBus Fast Mode Switching Characteristics
          4. 6.17.3.1.4 PMBus Standard Mode Switching Characteristics
      4. 6.17.4 Serial Communications Interface (SCI)
      5. 6.17.5 Serial Peripheral Interface (SPI)
        1. 6.17.5.1 SPI Controller Mode Timings
          1. 6.17.5.1.1 SPI Controller Mode Timing Requirements
          2. 6.17.5.1.2 SPI Controller Mode Switching Characteristics - Clock Phase 0
          3. 6.17.5.1.3 SPI Controller Mode Switching Characteristics - Clock Phase 1
          4. 6.17.5.1.4 SPI Controller Mode Timing Diagrams
        2. 6.17.5.2 SPI Peripheral Mode Timings
          1. 6.17.5.2.1 SPI Peripheral Mode Timing Requirements
          2. 6.17.5.2.2 SPI Peripheral Mode Switching Characteristics
          3. 6.17.5.2.3 SPI Peripheral Mode Timing Diagrams
      6. 6.17.6 Local Interconnect Network (LIN)
      7. 6.17.7 Fast Serial Interface (FSI)
        1. 6.17.7.1 FSI Transmitter
          1. 6.17.7.1.1 FSITX Electrical Data and Timing
            1. 6.17.7.1.1.1 FSITX Switching Characteristics
            2. 6.17.7.1.1.2 FSITX Timings
        2. 6.17.7.2 FSI Receiver
          1. 6.17.7.2.1 FSIRX Electrical Data and Timing
            1. 6.17.7.2.1.1 FSIRX Timing Requirements
            2. 6.17.7.2.1.2 FSIRX Switching Characteristics
            3. 6.17.7.2.1.3 FSIRX Timings
        3. 6.17.7.3 FSI SPI Compatibility Mode
          1. 6.17.7.3.1 FSITX SPI Signaling Mode Electrical Data and Timing
            1. 6.17.7.3.1.1 FSITX SPI Signaling Mode Switching Characteristics
            2. 6.17.7.3.1.2 FSITX SPI Signaling Mode Timings
      8. 6.17.8 Universal Serial Bus (USB)
        1. 6.17.8.1 USB Electrical Data and Timing
          1. 6.17.8.1.1 USB Input Ports DP and DM Timing Requirements
          2. 6.17.8.1.2 USB Output Ports DP and DM Switching Characteristics
  8. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Memory
      1. 7.3.1 Memory Map
        1. 7.3.1.1 Dedicated RAM (Mx RAM)
        2. 7.3.1.2 Local Shared RAM (LSx RAM)
        3. 7.3.1.3 Global Shared RAM (GSx RAM)
        4. 7.3.1.4 Message RAM
      2. 7.3.2 Control Law Accelerator (CLA) Memory Map
      3. 7.3.3 Flash Memory Map
        1. 7.3.3.1 Addresses of Flash Sectors
      4. 7.3.4 Peripheral Registers Memory Map
    4. 7.4  Identification
    5. 7.5  Bus Architecture – Peripheral Connectivity
    6. 7.6  C28x Processor
      1. 7.6.1 Floating-Point Unit (FPU)
      2. 7.6.2 Trigonometric Math Unit (TMU)
      3. 7.6.3 VCRC Unit
    7. 7.7  Control Law Accelerator (CLA)
    8. 7.8  Embedded Real-Time Analysis and Diagnostic (ERAD)
    9. 7.9  Direct Memory Access (DMA)
    10. 7.10 Device Boot Modes
      1. 7.10.1 Device Boot Configurations
        1. 7.10.1.1 Configuring Boot Mode Pins
        2. 7.10.1.2 Configuring Boot Mode Table Options
      2. 7.10.2 GPIO Assignments
    11. 7.11 Security
      1. 7.11.1 Securing the Boundary of the Chip
        1. 7.11.1.1 JTAGLOCK
        2. 7.11.1.2 Zero-pin Boot
      2. 7.11.2 Dual-Zone Security
      3. 7.11.3 Disclaimer
    12. 7.12 Watchdog
    13. 7.13 C28x Timers
    14. 7.14 Dual-Clock Comparator (DCC)
      1. 7.14.1 Features
      2. 7.14.2 Mapping of DCCx Clock Source Inputs
    15. 7.15 Configurable Logic Block (CLB)
  9. Reference Design
  10. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Markings
    3. 9.3 Tools and Software
    4. 9.4 Documentation Support
    5. 9.5 Support Resources
    6. 9.6 Trademarks
    7. 9.7 Electrostatic Discharge Caution
    8. 9.8 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
    2.     TAPE AND REEL INFORMATION
    3.     TRAY

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PNA|80
  • PZ|100
  • PTF|128
  • PDT|128
Thermal pad, mechanical data (Package|Pins)

Reference Design

The TI Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all reference designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at the Select TI reference designs page.

Below is a partial list of applicable reference designs. A full listing of supported reference designs for this device, as well as other C2000 MCUs, is maintained inside TI resource explorer.

3-kW, 180-W/in3 single-phase totem-pole bridgeless PFC reference design with 16-A max input
This reference design demonstrates a method to control a continuous conduction mode Totem pole power factor correction converter (PFC) using C2000™ microcontrollers. The PFC also works as inverter in grid connected (current controlled) mode. The converter is designed to support a maximum input current of 16-ARMS and peak power of 3.6 kW.

Bidirectional 400-V/12-V DC/DC Converter Reference Design
The Bidirectional 400V-12V DC/DC Converter Reference Design is a microcontroller-based implementation of an isolated bi-directional DC-DC converter. A phase shifted full-bridge (PSFB) with synchronous rectification controls power flow from a 400V bus/battery to the 12V battery in step-down mode, while a push-pull stage controls the reverse power flow from the low voltage battery to the high voltage bus/battery in boost mode.

GaN-based, 6.6-kW, bidirectional, onboard charger reference design
The PMP22650 reference design is a 6.6-kW, bidirectional, onboard charger. The design employs a two-phase totem pole PFC and a full-bridge CLLLC converter with synchronous rectification. The CLLLC utilizes both frequency and phase modulation to regulate the output across the required regulation range.

Bidirectional CLLLC resonant dual active bridge (DAB) reference design for HEV/EV onboard charger
CLLLC resonant DAB with bidirectional power flow capability and soft switching characteristics is an ideal candidate for Hybrid Electric Vehicle/Electric Vehicle (HEV/EV) on-board chargers and energy storage applications. This design illustrates control of this power topology using a C2000™ MCU in closed voltage and closed current-loop mode.

7.4-kW on-board charger reference design with CCM totem pole PFC and CLLLC DC/DC using C2000™ MCU
TIDM-02013 is a bidirectional onboard charger reference design. The design consists of an interleaved continuous conduction mode (CCM) totem-pole (TTPL) bridgeless power-factor correction (PFC) power stage followed by a CLLLC DCDC power stage all controlled using a single C2000™ real-time control microcontroller (MCU), while utilizing a TI gallium nitride (GaN) power module.

48-V Three-Phase Inverter With Shunt-Based In-Line Motor Phase Current Sensing Evaluation Module
The BOOSTXL-3PHGANINV evaluation module features a 48-V/10-A three-phase GaN inverter with precision in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives.

C2000 DesignDRIVE position manager BoosterPack™ plug-in module
The PositionManager BoosterPack is a flexible low voltage platform intended for evaluating interfaces to absolute encoders and analog sensors like resolvers and SinCos transducers. When combined with thec DesignDRIVE Position Manager software solutions this low-cost evaluation module becomes a powerful tool for interfacing many popular position encoder types such as EnDat, BiSS and T-format with C2000 Real-Time Control devices. C2000 Position Manager technology integrates interfaces to the most popular digital and analog position sensors onto C2000 Real-Time Controller, thus eliminating the need for external FPGAs for these functions.

Distributed multi-axis servo drive over fast serial interface (FSI) reference design
This reference design presents an example distributed or decentralized multi-axis servo drive over Fast Serial Interface (FSI) using C2000™ real-time controllers. Multi-axis servo drives are used in many applications such as factory automation and robots. The cost per axis, performance and ease of use are always high concerns for such systems. FSI is a cost-optimized and reliable high speed communication interface with low jitter that can daisy-chain multiple C2000 microcontrollers.

10-kW, bidirectional three-phase three-level (T-type) inverter and PFC reference design
This verified reference design provides an overview on how to implement a three-level three-phase SiC based DC:AC T-type inverter stage. Higher switching frequency of 50KHz reduces the size of magnetics for the filter design and enables higher power density. The use of SiC MOSFETs with switching loss ensures higher DC bus voltages of up to 1000V and lower switching losses with a peak efficiency of 99 percent. This design is configurable to work as a two-level or three-level inverter.

Bi-directional, dual active bridge reference design for level 3 electric vehicle charging stations
This reference design provides an overview on the implementation of a single-phase dual active bridge (DAB) DC/DC converter. DAB topology offers advantages like soft-switching commutations, a decreased number of devices and high efficiency. The design is beneficial where power density, cost, weight, galvanic isolation, high voltage conversion ratio and reliability are critical factors, making it ideal for EV charging stations and energy storage applications. Modularity and symmetrical structure in DAB allow for stacking converters to achieve high power throughput and facilitate a bidirectional mode of operation to support battery charging and discharging applications.

1.6kW, bidirectional micro inverter based on GaN reference design
This reference design shows a four-input bidirectional 1.6kW GaN-based microinverter with energy storage capability.