SCDS443B October   2022  – June 2024 TMUX7201 , TMUX7202

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Thermal Information
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Source or Drain Continuous Current
    6. 5.6  ±15V Dual Supply: Electrical Characteristics 
    7. 5.7  ±15V Dual Supply: Switching Characteristics 
    8. 5.8  ±20V Dual Supply: Electrical Characteristics
    9. 5.9  ±20V Dual Supply: Switching Characteristics
    10. 5.10 44V Single Supply: Electrical Characteristics 
    11. 5.11 44V Single Supply: Switching Characteristics 
    12. 5.12 12V Single Supply: Electrical Characteristics 
    13. 5.13 12V Single Supply: Switching Characteristics 
    14. 5.14 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  On-Resistance
    2. 6.2  Off-Leakage Current
    3. 6.3  On-Leakage Current
    4. 6.4  tON and tOFF Time
    5. 6.5  tON (VDD) Time
    6. 6.6  Propagation Delay
    7. 6.7  Charge Injection
    8. 6.8  Off Isolation
    9. 6.9  Bandwidth
    10. 6.10 THD + Noise
    11. 6.11 Power Supply Rejection Ratio (PSRR)
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Bidirectional Operation
      2. 7.3.2 Rail-to-Rail Operation
      3. 7.3.3 1.8V Logic Compatible Inputs
      4. 7.3.4 Integrated Pull-Down Resistor on Logic Pins
      5. 7.3.5 Fail-Safe Logic
      6. 7.3.6 latch-up Immune
      7. 7.3.7 Ultra-Low Charge Injection
    4. 7.4 Device Functional Modes
    5. 7.5 Truth Tables
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 TIA Feedback Gain Switch
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

12V Single Supply: Electrical Characteristics 

VDD = +12V ± 10%, VSS = 0V, GND = 0V (unless otherwise noted) 
Typical at VDD = +12V, VSS = 0V, TA = 25℃  (unless otherwise noted)
PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT
ANALOG SWITCH
RON On-resistance VS = 0V to 10V
ID = –10mA
25°C 2.1 3.2 Ω
–40°C to +85°C 3.8 Ω
–40°C to +125°C 4.2 Ω
RON FLAT On-resistance flatness VS = 0V to 10V
IS = –10mA
25°C 0.5 1.2 Ω
–40°C to +85°C 1.4 Ω
–40°C to +125°C 1.6 Ω
RON DRIFT On-resistance drift VS = 6V, IS = –10mA –40°C to +125°C 0.017 Ω/°C
IS(OFF) Source off leakage current(1) VDD = 13.2V, VSS = 0V
Switch state is off
VS = 10V / 1V
VD = 1V / 10V
25°C –0.4 0.05 0.4 nA
–40°C to +85°C –3 3 nA
–40°C to +125°C –25 25 nA
ID(OFF) Drain off leakage current(1) VDD = 13.2V, VSS = 0V
Switch state is off
VS = 10V / 1V
VD = 1V / 10V
25°C –0.4 0.05 0.4 nA
–40°C to +85°C –3 3 nA
–40°C to +125°C –25 25 nA
IS(ON)
ID(ON)
Channel on leakage current(2) VDD = 13.2V, VSS = 0V
Switch state is on
VS = VD = 10V or 1V
25°C –0.65 0.05 0.65 nA
–40°C to +85°C –2 2 nA
–40°C to +125°C –12 12 nA
LOGIC INPUTS (SEL / EN pins)
VIH Logic voltage high –40°C to +125°C 1.3 44 V
VIL Logic voltage low –40°C to +125°C 0 0.8 V
IIH Input leakage current –40°C to +125°C 0.4 2 µA
IIL Input leakage current –40°C to +125°C –0.1 –0.005 µA
CIN Logic input capacitance –40°C to +125°C 3.5 pF
POWER SUPPLY
IDD VDD supply current VDD = 13.2V, VSS = 0V
Logic inputs = 0V, 5V, or VDD
25°C 27 35 µA
–40°C to +85°C   40 µA
–40°C to +125°C   45 µA
When VS is positive, VD is negative, or when VS is negative, VD is positive.
When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.