SCDS454 January   2024 TMUX7208M

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Thermal Information
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Source or Drain Continuous Current
    6. 6.6  ±15V Dual Supply: Electrical Characteristics 
    7. 6.7  ±15V Dual Supply: Switching Characteristics 
    8. 6.8  ±20V Dual Supply: Electrical Characteristics
    9. 6.9  ±20V Dual Supply: Switching Characteristics
    10. 6.10 44V Single Supply: Electrical Characteristics 
    11. 6.11 44V Single Supply: Switching Characteristics 
    12. 6.12 12 V Single Supply: Electrical Characteristics 
    13. 6.13 12 V Single Supply: Switching Characteristics 
    14. 6.14 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1  On-Resistance
    2. 7.2  Off-Leakage Current
    3. 7.3  On-Leakage Current
    4. 7.4  Transition Time
    5. 7.5  tON(EN) and tOFF(EN)
    6. 7.6  Break-Before-Make
    7. 7.7  tON (VDD) Time
    8. 7.8  Propagation Delay
    9. 7.9  Charge Injection
    10. 7.10 Off Isolation
    11. 7.11 Crosstalk
    12. 7.12 Bandwidth
    13. 7.13 THD + Noise
    14. 7.14 Power Supply Rejection Ratio (PSRR)
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Bidirectional Operation
      2. 8.3.2 Rail-to-Rail Operation
      3. 8.3.3 1.8 V Logic Compatible Inputs
      4. 8.3.4 Integrated Pull-Down Resistor on Logic Pins
      5. 8.3.5 Fail-Safe Logic
      6. 8.3.6 Latch-Up Immune
      7. 8.3.7 Ultra-Low Charge Injection
    4. 8.4 Device Functional Modes
    5. 8.5 Truth Tables
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

±20V Dual Supply: Electrical Characteristics

VDD = +20V ± 10%, VSS = –20V ±10%, GND = 0V (unless otherwise noted) 
Typical at VDD = +20V, VSS = –20V, TA = 25℃  (unless otherwise noted)
PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT
ANALOG SWITCH
RON On-resistance VS = –15V to +15V
ID = –10mA
Refer to On-Resistance
25°C 3.5 5.4 Ω
–40°C to +85°C 6.7 Ω
–55°C to +125°C 7.9 Ω
ΔRON On-resistance mismatch between channels VS = –15V to +15V
ID = –10mA
Refer to On-Resistance
25°C 0.2 0.7 Ω
–40°C to +85°C 0.8 Ω
–55°C to +125°C 0.9 Ω
RON FLAT On-resistance flatness VS = –15V to +15V
IS = –10mA
Refer to On-Resistance
25°C 0.4 1.2 Ω
–40°C to +85°C 1.5 Ω
–55°C to +125°C 1.9 Ω
RON DRIFT On-resistance drift VS = 0V, IS = –10mA
Refer to On-Resistance
–55°C to +125°C 0.016 Ω/°C
IS(OFF) Source off leakage current(1) VDD = 22V, VSS = –22V
Switch state is off
VS = +15V / –15V
VD = –15V / + 15V
Refer to Off-Leakage Current
25°C –1 0.04 1 nA
–40°C to +85°C –2 2 nA
–55°C to +125°C –10 10 nA
ID(OFF) Drain off leakage current(1) VDD = 22V, VSS = –22V
Switch state is off
VS = +15V / –15V
VD = –15V / + 15V
Refer to Off-Leakage Current
25°C –1 0.04 1 nA
–40°C to +85°C –11 11 nA
–55°C to +125°C –70 70 nA
IS(ON)
ID(ON)
Channel on leakage current(2) VDD = 22V, VSS = –22V
Switch state is on
VS = VD = ±15V
Refer to On-Leakage Current
25°C –1 0.04 1 nA
–40°C to +85°C –10 10 nA
–55°C to +125°C –62 62 nA
LOGIC INPUTS (EN, A0, A1, A2)
VIH Logic voltage high –55°C to +125°C 1.3 44 V
VIL Logic voltage low –55°C to +125°C 0 0.8 V
IIH Input leakage current –55°C to +125°C 0.4 1.2 µA
IIL Input leakage current –55°C to +125°C –0.1 –0.005 µA
CIN Logic input capacitance –55°C to +125°C 3.5 pF
POWER SUPPLY
IDD VDD supply current VDD = 22V, VSS = –22V
Logic inputs = 0V, 5V, or VDD
25°C 40 60 µA
–40°C to +85°C 70 µA
–55°C to +125°C 84 µA
ISS VSS supply current VDD = 22V, VSS = –22V
Logic inputs = 0V, 5V, or VDD
25°C 2 9 µA
–40°C to +85°C 18 µA
–55°C to +125°C 24 µA
When VS is positive, VD is negative, and vice versa.
When VS is at a voltage potential, VD is floating, and vice versa.