SCDS456 January   2024 TMUX7212M

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Thermal Information
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Source or Drain Continuous Current
    6.     ±15 V Dual Supply: Electrical Characteristics 
    7.     ±15 V Dual Supply: Switching Characteristics 
    8.     ±20 V Dual Supply: Electrical Characteristics
    9.     ±20 V Dual Supply: Switching Characteristics
    10. 44  V Single Supply: Electrical Characteristics 
    11. 44  V Single Supply: Switching Characteristics 
    12. 12  V Single Supply: Electrical Characteristics 
    13. 12  V Single Supply: Switching Characteristics 
    14. 6.6 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1  On-Resistance
    2. 7.2  Off-Leakage Current
    3. 7.3  On-Leakage Current
    4. 7.4  tON and tOFF Time
    5. 7.5  tON (VDD) Time
    6. 7.6  Propagation Delay
    7. 7.7  Charge Injection
    8. 7.8  Off Isolation
    9. 7.9  Channel-to-Channel Crosstalk
    10. 7.10 Bandwidth
    11. 7.11 THD + Noise
    12. 7.12 Power Supply Rejection Ratio (PSRR)
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Bidirectional Operation
      2. 8.3.2 Rail-to-Rail Operation
      3. 8.3.3 1.8V Logic Compatible Inputs
      4. 8.3.4 Integrated Pull-Down Resistor on Logic Pins
      5. 8.3.5 Fail-Safe Logic
      6. 8.3.6 Latch-Up Immune
      7. 8.3.7 Ultra-Low Charge Injection
    4. 8.4 Device Functional Modes
    5. 8.5 Truth Tables
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application – Switched Gain Amplifier
    3. 9.3 Design Requirements
    4. 9.4 Detailed Design Procedure
    5. 9.5 Power Supply Recommendations
    6. 9.6 Layout
      1. 9.6.1 Layout Guidelines
      2. 9.6.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The TMUX7212M is a complementary metal-oxide semiconductor (CMOS) switch with four independently selectable 1:1, single-pole, single-throw (SPST) switch channels. The devices work with a single supply (4.5V to 44 V), dual supplies (±4.5V to ±22 V), or asymmetric supplies (such as VDD = 12 V, VSS = –5V). The TMUX7212M supports bidirectional analog and digital signals on the source (Sx) and drain (Dx) pins ranging from VSS to VDD.

Each switch of the TMUX7212M is controlled with appropriate logic control inputs on the SELx pins. The TMUX7212M is part of the precision switches and multiplexers family of devices and have very low on and off leakage currents allowing them to be used in high precision measurement applications.

The TMUX7212M provides latch-up immunity, preventing undesirable high current events between parasitic structures within the device typically caused by overvoltage events. A latch-up condition typically continues until the power supply rails are turned off and can lead to device failure. The latch-up immunity feature allows the TMUX7212M family of switches and multiplexers to be used in harsh environments. Additionally, the TMUX7212M is rated for extended temperature use down to –55°C, making it an excellent choice for harsh industrial and aerospace applications.

Package Information
PART NUMBER (1) PACKAGE(2) PACKAGE SIZE(3)
TMUX7212M PW (TSSOP, 16) 5 mm × 6.4 mm
See Section 4
For more information, see Section 12
The package size (length × width) is a nominal value and includes pins, where applicable.