SLOS717B August   2011  – December 2014 TPA2025D1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Operating Characteristics
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Battery Tracking Automatic Gain Control (AGC)
      2. 9.3.2 Boost Converter Auto Pass Through (APT)
      3. 9.3.3 Short Circuit Auto-Recovery
      4. 9.3.4 Thermal Protection
      5. 9.3.5 Operation with DACS and Codecs
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation Below AGC Threshold
      2. 9.4.2 Shutdown Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Boost Converter Component Section
          1. 10.2.2.1.1 Inductor Equations
          2. 10.2.2.1.2 Boost Converter Capacitor Selection
          3. 10.2.2.1.3 Boost Terms
        2. 10.2.2.2 Input Capacitors
        3. 10.2.2.3 Speaker Load Limitation
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
    1. 11.1 Power Supply Decoupling Capacitors
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Trademarks
    2. 13.2 Electrostatic Discharge Caution
    3. 13.3 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free–air temperature range, TA= 25°C (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage VBAT –0.3 6 V
Input Voltage, VI IN+, IN– –0.3 VBAT + 0.3 V
Output continuous total power dissipation See Thermal Information
Operating free-air temperature range, TA –40 85 °C
Operating junction temperature range, TJ –40 150 °C
Minimum load resistance 3.2 Ω
Maximum input voltage swing EN = 0 V 2 VRMS
Storage temperature range, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
Machine model (MM) ±100
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
Supply voltage, VBAT 2.5 5.2 V
VIH High–level input voltage, EN 1.3 V
VIL Low–level input voltage, EN 0.6 V
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 150 °C

7.4 Thermal Information

THERMAL METRIC(1) TPA2025D1 UNITS
YZG
12 PINS
RθJA Junction-to-ambient thermal resistance 97.3 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 36.7
RθJB Junction-to-board thermal resistance 55.9
ψJT Junction-to-top characterization parameter 13.9
ψJB Junction-to-board characterization parameter 49.5
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

VBAT = 3.6 V, TA = 25°C, RL = 8 Ω + 33 μH (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VBAT supply voltage range 2.5 5.2 V
Class-D supply voltage range EN = VBAT, boost converter active 5.75 V
Boost converter disabled (in bypass mode) 2.5 5.2
Supply under voltage shutdown 2.2 V
Operating quiescent current EN = VBAT = 3.6 V 2.0 5 mA
EN = VBAT = 5.2V 2.5 6
Shutdown quiescent current VBAT = 2.5 V to 5.2 V, EN = GND 0.2 1 μA
Input common-mode voltage range IN+, IN– 0.6 1.3 V
Start-up time 6 10 ms

7.6 Operating Characteristics

VBAT= 3.6 V, EN = VBAT, AGC = GND, TA = 25°C, RL = 8 Ω + 33 μH (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
BOOST CONVERTER
PVDD Boost converter output voltage range IBOOST = 0 mA 5.4 5.75 6.4 V
IBOOST = 700 mA 5.6 V
IL Boost converter input current limit Power supply current 1800 mA
Boost converter start-up current limit Boost converter starts up from full shutdown 600
Boost converter wakes up from auto-pass through mode 1000
fBOOST Boost converter frequency 1.2 MHz
CLASS-D AMPLIFIER
PO Output power THD = 1%, VBAT = 2.5 V, f = 1 kHz 1440 mW
THD = 1%, VBAT = 3.0 V, f = 1 kHz 1750
THD = 1%, VBAT = 3.6 V, f = 1 kHz 1900
THD = 1%, VBAT = 2.5 V, f = 1 kHz,
RL = 4 Ω + 33 µH
1460
THD = 1%, VBAT = 3.0 V, f = 1 kHz,
RL = 4 Ω + 33 µH
1800
THD = 1%, VBAT = 3.6 V, f = 1 kHz,
RL = 4 Ω + 33 µH
2280
VO Peak output voltage THD = 1%, VBAT = 3.6 V, f = 1 kHz, 6 dB crest factor sine burst, no clipping 5.45 V
AV Voltage gain 19.5 20 20.5 dB
|VOOS | Output offset voltage 2 10 mV
Short-circuit protection threshold current 2 A
RIN Input impedance (per input pin) AV = 20 dB 24
Input impedance in shutdown (per input pin) EN = 0 V 1300
ZO Output impedance in shutdown 2
Boost converter auto-pass through threshold Class-D output voltage threshold when boost converter automatically turns on 2 VPK
fCLASS-D Class-D switching frequency 275 300 325 kHz
η Class-D and boost combined efficiency PO = 1 W, VBAT = 3.6 V 82%
EN Noise output voltage A-weighted 49 μVRMS
Unweighted 65
SNR Signal-to-noise ratio 1.7 W, RL = 8 Ω + 33 µH. A-weighted 97 dB
1.7 W, RL = 8 Ω + 33 µH. Unweighted 95
2 W, RL = 4 Ω + 33 µH. A-weighted 95
2 W, RL = 4 Ω + 33 µH. Unweighted 93
THD+N Total harmonic distortion plus noise(1) PO = 100 mW, f = 1 kHz 0.06%
PO = 500 mW, f = 1 kHz 0.07%
PO = 1.7 W, f = 1 kHz, RL = 8 Ω + 33 µH 0.07%
PO = 2 W, f = 1 kHz, RL = 4 Ω + 33 µH 0.15%
THD+N added to other audio signal connected at amplifier input during shutdown 0.02%
AC PSRR AC-Power supply ripple rejection (output referred) 200 mVPP square ripple, VBAT = 3.8 V, f = 217 Hz 62.5 dB
200 mVPP square ripple, VBAT = 3.8 V, f = 1 kHz 62.5
AC CMRR AC-Common mode rejection ratio (output referred) 200 mVPP square ripple, VBAT = 3.8 V, f = 217 Hz 71 dB
200 mVPP square ripple, VBAT = 3.8 V, f = 1 kHz 71
AUTOMATIC GAIN CONTROL
AGC maximum attenuation 10 dB
AGC attenuation resolution 0.5 dB
AGC attack time (gain decrease) 20 µs/dB
AGC release time (gain increase) 1.6 s/dB
Gain vs VBAT slope VBAT < inflection point 7.5 dB/V
AGC inflection point
(Note: AGC pin voltage is read only at device power-up.  A device power cycle is required to change AGC inflection points.)
AGC = Float 3.25 V
AGC = GND 3.55
AGC = VBAT 3.75
(1) A-weighted

7.7 Typical Characteristics

VBAT = 3.6 V, CI = 1 µF, CBOOST = 22 µF, LBOOST = 2.2 µH, EN = VBAT, and Load = 8 Ω + 33 µH, no ferrite bead unless otherwise specified.
Fig01_Output_Power_vs_Supply_Voltage_8ohms_los717.pngFigure 1. Output Power vs Supply Voltage
Fig03_Supply_Current_vs_Output_Power_8ohms_los717.pngFigure 3. Total Supply Current vs Output Power
Fig05_Total_Harmonic_Distortion_Plus_Noise_vs_Frequency_8ohms_los717.pngFigure 5. Total Harmonic Distortion + Noise vs Frequency
Fig07_Total_Harmonic_Distortion_Plus_Noise_vs_Output_Power_8ohms_los717.pngFigure 7. Total Harmonic Distortion + Noise vs Output Power
Fig09_Gain_vs_Supply_Voltage_8ohms_los717.pngFigure 9. Gain vs Supply Voltage
Fig11_Output_Voltage_vs_Supply_Voltage_8ohms_los717.pngFigure 11. Maximum Peak Output Voltage vs Supply Voltage
Fig13_Supply_Current_vs_Supply_Voltage_8ohms_los717.pngFigure 13. Supply Current vs Supply Voltage
Fig15_Efficiency_vs_Output_Power_8ohms_los717.pngFigure 15. Total Efficiency vs Output Power
Fig17_Power_Dissipation_vs_Output_Power_8ohms_los717.pngFigure 17. Total Power Dissipation vs Output Power
Fig19_Quiescent_Supply_Current_vs_Supply_Voltage_los717.pngFigure 19. Quiescent Supply Current vs Supply Voltage
Fig21_Common_Mode_Rejection_vs_Frequency_8ohms_los717.pngFigure 21. Common Mode Rejection Ratio vs Frequency
Fig02_Output_Power_vs_Supply_Voltage_4ohms_los717.pngFigure 2. Output Power vs Supply Voltage
Fig04_Supply_Current_vs_Output_Power_4ohms_los717.pngFigure 4. Total Supply Current vs Output Power
Fig06_Total_Harmonic_Distortion_Plus_Noise_vs_Frequency_4ohms_los717.pngFigure 6. Total Harmonic Distortion + Noise vs Frequency
Fig08_Total_Harmonic_Distortion_Plus_Noise_vs_Output_Power_4ohms_los717.pngFigure 8. Total Harmonic Distortion + Noise vs Output Power
Fig10_Gain_vs_Supply_Voltage_4ohms_los717.pngFigure 10. Gain vs Supply Voltage
Fig12_Output_Voltage_vs_Supply_Voltage_4ohms_los717.pngFigure 12. Maximum Peak Output Voltage vs Supply Voltage
Fig14_Supply_Current_vs_Supply_Voltage_4ohms_los717.pngFigure 14. Supply Current vs Supply Voltage
Fig16_Efficiency_vs_Output_Power_4ohms_los717.pngFigure 16. Total Efficiency vs Output Power
Fig18_Power_Dissipation_vs_Output_Power_4ohms_los717.pngFigure 18. Total Power Dissipation vs Output Power
Fig20_Supply_Ripple_Rejection_vs_Frequency_8ohms_los717.pngFigure 20. Supply Ripple Rejection vs Frequency