SLUSF08 March   2024 TPS1213-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Charge Pump and Gate Driver Output (VS, G1PU, G1PD, BST, SRC)
      2. 7.3.2 Capacitive Load Driving
        1. 7.3.2.1 Using Low Power Bypass FET (G2 drive) for Load Capacitor Charging
        2. 7.3.2.2 Using Main FET's (G1 drive) Gate Slew Rate Control
      3. 7.3.3 Short-Circuit Protection
        1. 7.3.3.1 Short-Circuit Protection With Auto-Retry
        2. 7.3.3.2 Short-Circuit Protection With Latch-Off
      4. 7.3.4 Device Functional Modes
        1. 7.3.4.1 State Diagram
        2. 7.3.4.2 State Transition Timing Diagram
        3. 7.3.4.3 Power Down
        4. 7.3.4.4 Shutdown Mode
        5. 7.3.4.5 Low Power Mode
        6. 7.3.4.6 Active Mode
      5. 7.3.5 Undervoltage Protection (UVLO)
      6. 7.3.6 Reverse Polarity Protection
      7. 7.3.7 Short-Circuit Protection Diagnosis (SCP_TEST)
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Application Limitations
        1. 8.1.1.1 Short-Circuit Protection Delay
        2. 8.1.1.2 Short-Circuit Protection and Load wakeup Threshold
    2. 8.2 Typical Application 1: Driving Power at all times (PAAT) Loads With Automatic Load Wakeup
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Typical Application 2: Driving Power at all times (PAAT) Loads With Automatic Load Wakeup and Output Bulk Capacitor Charging
      1. 8.3.1 Design Requirements
      2. 8.3.2 External Component Selection
      3. 8.3.3 Application Curves
    4. 8.4 TIDA-020065: Automotive Smart Fuse Reference Design driving Power at all times (PAAT) Loads With Automatic Load Wakeup, Output Bulk Capacitor Charging, Bi-directional Current Sensing and Software I2t
    5. 8.5 Power Supply Recommendations
    6. 8.6 Layout
      1. 8.6.1 Layout Guidelines
      2. 8.6.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DGX|19
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Short-Circuit Protection Delay

In application designs with current sense configurations as shown in Figure 7-7 and Figure 7-8 with CTMR = Open, the short-circuit protection delay during power up with output short circuited does not match the specified maximum value of 10µs.

Testing has shown that the actual short-circuit protection delay during power up by EN/UVLO signal is approximately 70 µs. This increase in protection delay still allows for the TPS12130-Q1 to operate as designed, but results in larger power dissipation in the external MOSFET during output short-circuit scenario.

A design fix must be included in the final version of the IC.