SLVSHZ1 June   2024 TPS1HTC100-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Recommended Connections for Unused Pins
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 SNS Timing Characteristics
    7. 5.7 Switching Characteristics
    8. 5.8 Timing Diagrams
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Accurate Current Sense
      2. 7.3.2 Programmable Current Limit
        1. 7.3.2.1 Capacitive Charging
      3. 7.3.3 Inductive-Load Switching-Off Clamp
      4. 7.3.4 Full Protections and Diagnostics
        1. 7.3.4.1 Short-Circuit and Overload Protection
        2. 7.3.4.2 Open-Load Detection
        3. 7.3.4.3 Thermal Protection Behavior
        4. 7.3.4.4 UVLO Protection
        5. 7.3.4.5 Reverse Polarity Protection
        6. 7.3.4.6 Protection for MCU I/Os
      5. 7.3.5 Diagnostic Enable Function
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Dynamically Changing Current Limit
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Without a GND Network
        2. 8.4.2.2 With a GND Network
        3. 8.4.2.3 Thermal Considerations
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS1HTC100-Q1 is a automotive, single-channel, fully-protected, high-side power switch with an integrated NMOS power FET and charge pump rated to 60V DC tolerance. Full diagnostics and high-accuracy current-sense features enable intelligent control of the load. Low logic high threshold, VIH, of 1.5V on the input pins allow use of MCUs down to 1.8V. A programmable current-limit function greatly improves the reliability of the whole system. The device diagnostic reporting has two pins to support both digital status and analog current-sense output, for multiplexing the MCU analog or digital interface among devices.

The digital status report is implemented with an open-drain structure on the fault pin. When a fault condition occurs, the pin is pulled down to GND. An external pullup is required to match the microcontroller supply level. High-accuracy current sensing allows a better real-time monitoring effect and more-accurate diagnostics without further calibration. A current mirror is used to source 1 / KSNS of the load current, which is reflected as voltage on the SNS pin. KSNS is a constant value across temperature and supply voltage. The SNS pin can also report a fault by forcing a voltage of VSNSFH that scales with the diagnostic enable voltage so that the max voltage seen by the system ADC is within an acceptable value. This removes the need for an external Zener diode or resistor divider on the SNS pin.

The external high-accuracy current limit allows setting the current limit value by application. The external high-accuracy current limit highly improves the reliability of the system by clamping the inrush current effectively under start-up or short-circuit conditions. Also, the external high-accuracy current limit can save system costs by reducing PCB trace, connector size, and the preceding power-stage capacity. An internal current limit can also be implemented in this device. The lower value of the external or internal current-limit value is applied.

An active drain to source voltage clamp is built in to address switching off the energy of inductive loads, such as relays, solenoids, pumps, motors, and so forth. During the inductive switching-off cycle, both the energy of the power supply (EBAT) and the load (ELOAD) are dissipated on the high-side power switch itself. With the benefits of process technology and excellent IC layout, the TPS1HTC100-Q1 device can achieve excellent energy dissipation capacity, which can help save the need of using external free-wheeling circuitry in most cases.

The TPS1HTC100-Q1 device can be used as a high-side power switch for a wide variety of resistive, inductive, and capacitive loads, including the low-wattage bulbs, LEDs, relays, solenoids, and heaters.