SLVSHZ1 June   2024 TPS1HTC100-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Recommended Connections for Unused Pins
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 SNS Timing Characteristics
    7. 5.7 Switching Characteristics
    8. 5.8 Timing Diagrams
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Accurate Current Sense
      2. 7.3.2 Programmable Current Limit
        1. 7.3.2.1 Capacitive Charging
      3. 7.3.3 Inductive-Load Switching-Off Clamp
      4. 7.3.4 Full Protections and Diagnostics
        1. 7.3.4.1 Short-Circuit and Overload Protection
        2. 7.3.4.2 Open-Load Detection
        3. 7.3.4.3 Thermal Protection Behavior
        4. 7.3.4.4 UVLO Protection
        5. 7.3.4.5 Reverse Polarity Protection
        6. 7.3.4.6 Protection for MCU I/Os
      5. 7.3.5 Diagnostic Enable Function
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Dynamically Changing Current Limit
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Without a GND Network
        2. 8.4.2.2 With a GND Network
        3. 8.4.2.3 Thermal Considerations
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reverse Polarity Protection

Method 1: Blocking diode connected with VS. Both the device and load are protected when in reverse polarity.

TPS1HTC100-Q1 Reverse Protection With Blocking DiodeFigure 7-10 Reverse Protection With Blocking Diode

Method 2 (GND network protection): Only the high-side device is protected under this connection. The load reverse loop is limited by the load itself. Note when reverse polarity happens, the continuous reverse current through the power FET must be less than Irev. Of the three types of ground pin networks, TI strongly recommends type 3 (the resistor and diode in parallel). No matter what types of connection are between the device GND and the board GND, if a GND voltage shift happens, make sure the following proper connections for the normal operation:

  • TI recommends to leave floating.
  • Connect the current limit programmable resistor to the device GND.
TPS1HTC100-Q1 Reverse Protection With GND NetworkFigure 7-11 Reverse Protection With GND Network
  • Type 1 (resistor): The higher resistor value contributes to a better current limit effect during the reverse battery event or negative ISO pulses. However, the higher resistor leads to higher GND shift during normal operation mode. Also, consider the resistor power dissipation.
    Equation 9. TPS1HTC100-Q1
    Equation 10. TPS1HTC100-Q1

    where

    • VGNDshift is the maximum value for the GND shift, determined by the HSS and microcontroller. TI suggests a value ≤ 0.6V.
    • Inom is the nominal operating current.
    • –VCC is the maximum reverse voltage seen on the battery line.
    • –IGND is the maximum reverse current the ground pin can withstand, which is available in Section 5.1.

    If multiple high-side power switches are used, the resistor can be shared among devices.

  • Type 2 (diode): A diode is needed to block the reverse voltage, which also brings a ground shift (≈ 600mV). However, an inductive load is not acceptable to avoid an abnormal status when switching off.
  • Type 3 (resistor and diode in parallel (recommended)): A peak negative spike can occur when the inductive load is switching off, which can damage the HSD or the diode. So, TI recommends a resistor in parallel with the diode when driving an inductive load. The recommended selection are 4.7kΩ resistor in parallel with an IF > 200mA diode. If multiple high-side switches are used, the resistor and diode can be shared among devices.