SLVS798G January   2008  – June 2024 TPS2062A , TPS2066A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Recommended Operating Conditions
    3. 5.3 Thermal Information
    4. 5.4 Electrical Characteristics
    5. 5.5 Typical Characteristics
  7. Parameter Measurement Information
    1.     13
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Overcurrent
      1. 7.3.1 Overcurrent Conditions (TPS2062ADRB, TPS2066ADRB, and TPS2066AD)
      2. 7.3.2 Overcurrent Conditions (TPS2062AD)
    4. 7.4 OCx Response
    5. 7.5 Undervoltage Lockout (UVLO)
    6. 7.6 Enable ( ENx or ENx)
    7. 7.7 Thermal Sense
  9. Application Information
    1. 8.1 Power-Supply Considerations
    2. 8.2 Input and Output Capacitance
    3. 8.3 Power Dissipation and Junction Temperature
    4. 8.4 Universal Serial Bus (USB) Applications
    5. 8.5 Self-powered and Bus-Powered Hubs
    6. 8.6 Low-Power Bus-Powered And High-Power Bus-Powered Functions
    7. 8.7 USB Power-Distribution Requirements
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overcurrent Conditions (TPS2062AD)

Three possible overload conditions can occur for the TPS2062AD. In the first condition, the output has been shorted before the device is enabled or before VI(IN) has been applied. The TPS2062AD senses the short and immediately switches into a constant-current output.

In the second condition, a short or an overload occurs while the device is enabled. At the instant the overload occurs, high currents may flow for a short period of time before the current-limit circuit can react. After the short-circuit output current threshold (IOS) is reached, the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. After the short-circuit output current threshold (IOS) is reached, the device switches into constant-current mode.