SLVS728D January   2007  – October 2019 TPS2412 , TPS2413

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Diagram
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Dissipation Ratings
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Definitions
      2. 8.3.2 TPS2412 vs TPS2413 – MOSFET Control Methods
      3. 8.3.3 N+1 Power Supply – Typical Connection
      4. 8.3.4 Input ORing – Typical Connection
      5. 8.3.5 System Design and Behavior With Transients
      6. 8.3.6 TPS2412 Regulation-Loop Stability
      7. 8.3.7 MOSFET Selection and R(RSET)
      8. 8.3.8 Gate Drive, Charge Pump and C(BYP)
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Recommended Operating Range
    2. 10.2 VDD, BYP, and Powering Options
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • PW|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Recommended Operating Range

The maximum recommended bus voltage is lower than the absolute maximum voltage ratings on A, C, and VDD solely to provide some margin for transients on the bus. Most power systems experience transient voltages above the normal operating level. Short transients, or voltage spikes, may be clamped by the ORing MOSFET to an output capacitor and/or voltage rail depending on the system design. Transient protection, for example, a TVS diode (transient voltage suppressor, a type of Zener diode), may be required on the input or output if the system design does not inherently limit transient voltages below the TPS2412/13 absolute maximum ratings. If a TVS is required, it must protect to the absolute maximum ratings at the worst case clamping current. The TPS2412/13 will operate properly up to the absolute maximum voltage ratings on A, C, and VDD.