SLVSGT8 December   2022 TPS25961

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Undervoltage Protection (UVP) and Undervoltage Lockout (UVLO)
      2. 7.3.2 Overvoltage Protection
      3. 7.3.3 Inrush Current, Overcurrent and Short Circuit Protection
        1. 7.3.3.1 Slew Rate and Inrush Current Control (dVdt)
        2. 7.3.3.2 Active Current Limiting
        3. 7.3.3.3 Short-Circuit Protection
      4. 7.3.4 Overtemperature Protection (OTP)
      5. 7.3.5 Fault Response
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Adapter input protection for set-top boxes
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Programming the Current-Limit Threshold: RILM Selection
        2. 8.2.3.2 Undervoltage and Overvoltage Lockout Set Point
        3. 8.2.3.3 Output Voltage Rise Time (tR)
      4. 8.2.4 Application Curves
    3. 8.3 Application Example
      1. 8.3.1 Application Curves
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Transient Protection
      2. 8.4.2 Output Short-Circuit Measurements
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Voltage Rise Time (tR)

For a successful design, the junction temperature of device must be kept below the absolute maximum rating during both dynamic (start-up) and steady-state conditions. Dynamic power stresses often are an order of magnitude greater than the static stresses, so it is important to to determine that power dissipation is below a certain limit to avoid thermal shutdown during start-up.

Slew rate is 5 V/ms typically for TPS25961. The inrush current can be calculated as:

Equation 9. IINRUSH mA=SR (V/ms) x COUT µF=5 x 1=5 mA 
The average power dissipation inside the part during inrush can be calculated as:

Equation 10. PDINRUSH W=IINRUSH A x VIN V2=0.005 x 122=0.03 W
For the given power dissipation, the thermal shutdown time of the device must be greater than the ramp-up time tR to avoid start-up failure. Figure 8-2 shows the thermal shutdown limit, for 0.03 W of power, the shutdown time is very large as compared to tR = 2.4 ms. Therefore this application will have successful startup.

Figure 8-2 Time to Thermal Shutdown vs Power Dissipation