SLVSDT4F October   2017  – December 2021 TPS2662

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Undervoltage Lockout (UVLO)
      2. 9.3.2 Overvoltage Protection (OVP)
      3. 9.3.3 Hot Plug-In and Inrush Current Control
      4. 9.3.4 Reverse Polarity Protection
        1. 9.3.4.1 Input Side Reverse Polarity Protection
        2. 9.3.4.2 Output Side Reverse Polarity Protection
      5. 9.3.5 Overload and Short-Circuit Protection
        1. 9.3.5.1 Overload Protection
        2.       28
        3. 9.3.5.2 Short-Circuit Protection
          1. 9.3.5.2.1 Start-Up With Short-Circuit On Output
      6. 9.3.6 Reverse Current Protection
      7. 9.3.7 FAULT Response
      8. 9.3.8 IN, OUT, RTN, and GND Pins
      9. 9.3.9 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Low Current Shutdown Control (SHDN)
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Step-by-Step Design Procedure
        2. 10.2.2.2 Programming the Current Limit Threshold R(ILIM) Selection
        3. 10.2.2.3 Undervoltage Lockout and Overvoltage Set Point
        4. 10.2.2.4 Setting Output Voltage Ramp Time—(tdVdT)
          1. 10.2.2.4.1 Case 1: Start-Up Without Load—Only Output Capacitance C(OUT) Draws Current During Start-Up
          2. 10.2.2.4.2 Case 2: Start-Up With Load —Output Capacitance C(OUT) and Load Draws Current During Start-Up
          3. 10.2.2.4.3 Support Component Selections – R FLT and C(IN)
      3. 10.2.3 Application Curves
    3. 10.3 System Examples
      1. 10.3.1 Field Supply Protection in PLC, DCS I/O Modules
      2. 10.3.2 Simple 24-V Power Supply Path Protection
      3. 10.3.3 Power Stealing in Smart Thermostat
    4. 10.4 Do's and Don'ts
  11. 11Power Supply Recommendations
    1. 11.1 Transient Protection
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS2662x is a family of high voltage industrial eFuses with integrated back-to-back MOSFETs and enhanced built-in protection circuitry. The device provides robust protection for all systems and applications powered from 4.5 V to 60 V. The device can withstand ±60-V positive and negative supply voltages without damage. The device features fully integrated reverse polarity protection and require zero additional power components. For hot-pluggable boards, the device provides hot-swap power management with in-rush current control. Load, source, and device protections are provided with many programmable features including overcurrent, overvoltage, undervoltage. The precision overcurrent limit (±5% at 880 mA) helps to minimize over design of the input power supply, while the fast response short-circuit protection 220 ns (typical) immediately isolates the faulty load from the input supply when a short circuit is detected.

The internal robust protection control blocks of the TPS2662x along with its ±60-V rating helps to simplify the system designs for the surge compliance ensuring complete protection of the load and the device. TPS2662x devices are immune to noise tests like Electrical Fast Transients that are common in industrial applications and simplifies the system design that require criterion-A performance during this test.

The device provides precise monitoring of voltage bus for brown-out and overvoltage conditions and asserts fault signal for the downstream system. The TPS2662x monitor functions threshold accuracy of ±3% ensures tight supervision of the supply bus, eliminating the need for a separate supply voltage supervisor chip.

The device monitors V(IN) and V(OUT) to provide true reverse current blocking when a reverse condition or input power failure condition is detected.