SLVSE94G September   2018  – June 2024 TPS2663

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Hot Plug-In and Inrush Current Control
        1. 8.3.1.1 Thermal Regulation Loop
      2. 8.3.2  PGOOD and PGTH
        1. 8.3.2.1 PGTH as VOUT Sensing Input
      3. 8.3.3  Undervoltage Lockout (UVLO)
      4. 8.3.4  Overvoltage Protection (OVP)
      5. 8.3.5  Input Reverse Polarity Protection (B_GATE, DRV)
      6. 8.3.6  Reverse Current Protection
      7. 8.3.7  Overload and Short-Circuit Protection
        1. 8.3.7.1 Overload Protection
          1. 8.3.7.1.1 Active Current Limiting at 1 × IOL (TPS26630 and TPS26632 Only)
          2. 8.3.7.1.2 Active Current Limiting With 2 × IOL Pulse Current Support (TPS26631, TPS26633, TPS26635, TPS26636, and TPS26637 Only)
        2. 8.3.7.2 Short-Circuit Protection
          1. 8.3.7.2.1 Start-Up With Short Circuit on Output
      8. 8.3.8  Output Power Limiting, PLIM (TPS26632, TPS26633, TPS26635, TPS26636, and TPS26637 Only)
      9. 8.3.9  Current Monitoring Output (IMON)
      10. 8.3.10 FAULT Response (FLT)
      11. 8.3.11 IN_SYS, IN, OUT, and GND Pins
      12. 8.3.12 Thermal Shutdown
      13. 8.3.13 Low Current Shutdown Control (SHDN)
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application: Power Path Protection in a PLC System
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Programming the Current-Limit Threshold—R(ILIM) Selection
        2. 9.2.2.2 Undervoltage Lockout and Overvoltage Set Point
        3. 9.2.2.3 Output Buffer Capacitor – COUT
        4. 9.2.2.4 PGTH Set Point
        5. 9.2.2.5 Setting Output Voltage Ramp Time—(tdVdT)
          1. 9.2.2.5.1 Support Component Selections— RPGOOD and C(IN)
        6. 9.2.2.6 Selecting Q1, Q2 and TVS Clamp for Surge Protection
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
      1. 9.3.1 Simple 24-V Power Supply Path Protection
      2. 9.3.2 Priority Power MUX Operation
      3. 9.3.3 Input Protection for a Compact 24-V Auxiliary Power Supply for Servo Drives
    4. 9.4 Dos and Do Nots
    5. 9.5 Power Supply Recommendations
      1. 9.5.1 Transient Protection
    6. 9.6 Layout
      1. 9.6.1 Layout Guidelines
      2. 9.6.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGE|24
  • PWP|20
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Priority Power MUX Operation

Applications having two energy sources, such as portable battery powered equipment require preference of one source to another. For example, mains power (wall-adapter) has the priority over the internal backup power or auxiliary power. These applications demand for switch over from mains power to backup power only when main input voltage falls below a user defined threshold. The TPS2663x devices provide a simple solution for priority power multiplexing needs.

Figure 9-12 shows a typical priority power multiplexing implementation using devices. When the MAIN power is present, the device in VIN_MAIN path powers the OUT bus irrespective of whether auxiliary power VIN_AUX is greater than or less than VIN_MAIN. After the voltage on the VIN_MAIN rail falls below the user-defined threshold, the device VIN_MAIN issues a signal to switch over to auxiliary power VIN_AUX. The transition happens seamlessly in tOVP(dly_fast), with minimal voltage droop on the output. The voltage droop during transition is a function of load current and output capacitance. See Equation 13.

Equation 13. TPS2663

where

  • V(DROOP) is in volts, I(LOAD) is load current in Ampere, C(OUT) is output capacitance in µF, tOVP(fast_dly) = 140 µs (typical)

Figure 9-13, Figure 9-14, Figure 9-15 and figure 9-16 show typical switch-over waveforms of Priority Muxing implementation using the TPS26630 or TPS26631 for 20-V primary and 24-V auxiliary bus.

TPS2663 Priority Power Mux ImplementationFigure 9-12 Priority Power Mux Implementation
TPS2663 VIN_MAIN Power Recovery: Change Over from Auxiliary VIN_AUX to Primary Power VIN_MAIN
Figure 9-13 VIN_MAIN Power Recovery: Change Over from Auxiliary VIN_AUX to Primary Power VIN_MAIN
TPS2663 VIN_AUX Brownout Condition
Figure 9-15 VIN_AUX Brownout Condition
TPS2663 VIN_MAIN Brownout Condition: Change Over from Main VIN_MAIN to Auxiliary Power VIN_AUX
Figure 9-14 VIN_MAIN Brownout Condition: Change Over from Main VIN_MAIN to Auxiliary Power VIN_AUX
TPS2663 VIN_AUX Power Recovery
Figure 9-16 VIN_AUX Power Recovery