SLVSE94G September   2018  – June 2024 TPS2663

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Hot Plug-In and Inrush Current Control
        1. 8.3.1.1 Thermal Regulation Loop
      2. 8.3.2  PGOOD and PGTH
        1. 8.3.2.1 PGTH as VOUT Sensing Input
      3. 8.3.3  Undervoltage Lockout (UVLO)
      4. 8.3.4  Overvoltage Protection (OVP)
      5. 8.3.5  Input Reverse Polarity Protection (B_GATE, DRV)
      6. 8.3.6  Reverse Current Protection
      7. 8.3.7  Overload and Short-Circuit Protection
        1. 8.3.7.1 Overload Protection
          1. 8.3.7.1.1 Active Current Limiting at 1 × IOL (TPS26630 and TPS26632 Only)
          2. 8.3.7.1.2 Active Current Limiting With 2 × IOL Pulse Current Support (TPS26631, TPS26633, TPS26635, TPS26636, and TPS26637 Only)
        2. 8.3.7.2 Short-Circuit Protection
          1. 8.3.7.2.1 Start-Up With Short Circuit on Output
      8. 8.3.8  Output Power Limiting, PLIM (TPS26632, TPS26633, TPS26635, TPS26636, and TPS26637 Only)
      9. 8.3.9  Current Monitoring Output (IMON)
      10. 8.3.10 FAULT Response (FLT)
      11. 8.3.11 IN_SYS, IN, OUT, and GND Pins
      12. 8.3.12 Thermal Shutdown
      13. 8.3.13 Low Current Shutdown Control (SHDN)
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application: Power Path Protection in a PLC System
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Programming the Current-Limit Threshold—R(ILIM) Selection
        2. 9.2.2.2 Undervoltage Lockout and Overvoltage Set Point
        3. 9.2.2.3 Output Buffer Capacitor – COUT
        4. 9.2.2.4 PGTH Set Point
        5. 9.2.2.5 Setting Output Voltage Ramp Time—(tdVdT)
          1. 9.2.2.5.1 Support Component Selections— RPGOOD and C(IN)
        6. 9.2.2.6 Selecting Q1, Q2 and TVS Clamp for Surge Protection
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
      1. 9.3.1 Simple 24-V Power Supply Path Protection
      2. 9.3.2 Priority Power MUX Operation
      3. 9.3.3 Input Protection for a Compact 24-V Auxiliary Power Supply for Servo Drives
    4. 9.4 Dos and Do Nots
    5. 9.5 Power Supply Recommendations
      1. 9.5.1 Transient Protection
    6. 9.6 Layout
      1. 9.6.1 Layout Guidelines
      2. 9.6.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGE|24
  • PWP|20
Thermal pad, mechanical data (Package|Pins)
Orderable Information

PGTH as VOUT Sensing Input

The devices use PGTH as the output (Load) voltage monitor input and to set the down stream loads UVLO threshold. To set the input PGTH threshold, connect a resistor divider network from VOUT to PGTH terminal to GND as shown in Figure 3-1. During a system fault recovery (example: OVP high to low or UVLO low to high) when the internal FET gate control is enabled, the device samples the PGTH information and decides whether to turn ON the FET with fast slew rate or dVdT mode based on the sampled V(PGTH) information.

Figure 7-1 shows the turn-ON behavior based on V(PGTH) information. During the fault recovery instance if the V(PGTH) level is above(PGTHF) then the internal FET turns ON within a delay of tOVP(dly_fast) with fast slew rate (ignores the capacitance connected at dVdT pin) with thermal regulation loop enabled for a duration of tCL_PLIM(dly). Maximum current through the device during this operation is limited at I(OL) in TPS26630 and TPS26632 devices and at 2 × I(OL) in TPS26631, TPS26633, TPS26635, TPS26636 and TPS26637 devices for a maximum duration of tCB(dly). During the fault recovery instance, if the V(PGTH) level is below V(PGTHF), then the device turns ON the internal FET in dVdT mode and the slew rate depends on the dVdT capacitor value and maximum current through the devices is limited at I(OL). This way the device distinguishes between real system faults and system transients and the turn-ON delay is controlled accordingly. This scheme ensures fast recovery during system tests like voltage interruption and brown-out tests, EMC testing like Electrical Fast Transients (IEC61000-4-4) and Surge (IEC61000-4-5). The fast turn-ON during transient recovery feature can be disabled by connecting PGTH to GND. In this case, PGOOD is pulled low.