SLVSA38B December   2009  – July 2017 TPS43331-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  DC Electrical Characteristics
    6. 6.6  I2C Interface Electrical Characteristics
    7. 6.7  Switching Regulators Electrical Characteristics
    8. 6.8  Standby Regulator (VSTBY) Electrical Characteristics
    9. 6.9  Linear Regulator (VLR) Electrical Characteristics
    10. 6.10 High-Side Driver (HSD) Electrical Characteristics
    11. 6.11 AC Switching Characteristics
    12. 6.12 I2C Interface Switching Characteristics
    13. 6.13 Switching Regulators Switching Characteristics
    14. 6.14 Linear Regulator Switching Characteristics
    15. 6.15 High-Side Driver (HSD) Switching Characteristics
    16. 6.16 Timing and Switching Diagrams
    17. 6.17 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Unregulated Battery Input Voltage (VBAT)
      2. 7.3.2  Protected Unregulated Battery Input Voltage (VBATP)
      3. 7.3.3  Low-Voltage Warning Input (LVWIN)
      4. 7.3.4  Voltage Warning Output (VBATW)
      5. 7.3.5  Low-Voltage Reset (RST)
      6. 7.3.6  Power-Good Delay Timer Input (PGDLY)
      7. 7.3.7  Active Mode Enable Input (EN)
      8. 7.3.8  Slew Rate Control Capacitor Input (CSLEW)
      9. 7.3.9  Charge Pump Capacitor Input (VCP)
      10. 7.3.10 Power Ground (PGND)
      11. 7.3.11 Analog Ground Reference (AGND)
      12. 7.3.12 Inter-IC Communications Interface (I2CID)
      13. 7.3.13 Clock Input (SCL)
      14. 7.3.14 Data Line (SDA)
      15. 7.3.15 Interface Chip Identifier (I2CID)
      16. 7.3.16 Switch Mode Regulators
      17. 7.3.17 Upper FET Gate Drive Outputs (VGT1 and VGT2)
      18. 7.3.18 Lower FET Gate Driver Outputs (VGB1 and VGB2)
      19. 7.3.19 Bootstrap Capacitor Input (CBS1 and CBS2)
      20. 7.3.20 Phase Reference for High-Side Bootstrap Supply (PH1 and PH2)
      21. 7.3.21 Current Sense High-Side (ISHI1 and ISHI2)
      22. 7.3.22 Current Sense Low-Side (ISLO1 and ISLO2)
      23. 7.3.23 Regulated Output Sense Voltage Feedback (VFB1 and VFB2)
      24. 7.3.24 Feedback Compensation Input (VCMP1 and VCMP2)
      25. 7.3.25 Synchronization Input (SYNCH)
      26. 7.3.26 Standby Linear Regulator Input (VINSB)
      27. 7.3.27 Standby Regulator Output (VSTBY)
      28. 7.3.28 Standby Regulator Sense Voltage (VSTBYS)
      29. 7.3.29 Switched Linear Regulator Input (VINLR)
      30. 7.3.30 Switched Linear Regulator Output (VLR)
      31. 7.3.31 Switched Linear Regulator Sense Voltage (VLRS)
      32. 7.3.32 High-Side Driver Output (HSD)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Mode Definition
    5. 7.5 Programming
      1. 7.5.1 Register Definition for I2C
        1. 7.5.1.1 Chip Address Byte
    6. 7.6 Register Map
      1. 7.6.1 Data Register
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Type II Compensation
        2. 8.2.2.2 Type III Compensation
        3. 8.2.2.3 Component Calculations
          1. 8.2.2.3.1 Buck-Controllers (VBUCK1, VBUCK2)
        4. 8.2.2.4 Power Dissipation
        5. 8.2.2.5 Buck Regulators
          1. 8.2.2.5.1 Buck Regulator 1 (VBUCK 1)
            1. 8.2.2.5.1.1 Step 1. Calculate the Inductor Value
            2. 8.2.2.5.1.2 Step 2. Inductor Peak Current
            3. 8.2.2.5.1.3 Step 3. Calculating the Output Capacitance (CO)
            4. 8.2.2.5.1.4 Step 4. Calculating Loop Compensation Values
          2. 8.2.2.5.2 Buck Regulator 2 (VBUCK 2)
            1. 8.2.2.5.2.1 Step 5. Calculate the Inductor Value
            2. 8.2.2.5.2.2 Step 6. Inductor Peak Current
            3. 8.2.2.5.2.3 Step 7. Calculating the Output Capacitance (CO)
            4. 8.2.2.5.2.4 Step 8. Calculating Loop Compensation Values
      3. 8.2.3 Application Curves
    3. 8.3 System Example
      1. 8.3.1 Multiple Power Supply Configuration for Vehicle Audio Applications
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Grounding and Circuit Layout Considerations
    2. 10.2 Layout Example
    3. 10.3 Power Dissipation Derating
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout

Layout Guidelines

Grounding and Circuit Layout Considerations

The TPS43331-Q1 has two separate ground termination (AGND and PGND) pins. The ground signal consists of a plane to minimize impedance. Try to separate the low-signal ground termination from the power-ground signal. The high-power noisy circuits, such as the output, synchronous rectifier, MOSFET driver decoupling capacitor, and the input capacitor, should be connected to the PGND plane. The AGND plane should only make a single point connection to the PGND plane.

The sensitive nodes, such as the feedback resistor divider, oscillator resistor (to set frequency), current sense, and compensation circuitry, should be connected to the AGND plane.

Try and minimize the high current-carrying loops to a minimum by ensuring optimal component placement. Ensure the bypass capacitors are located as close as possible to the respective power and ground pins.

Sensitive circuits, such as sense feedback , frequency setting resistor for the oscillator, current sense and compensation circuits, should not be located near the dv/dt nodes which include the gate drive outputs, phase pins, and boost circuits (bootstrap).

Layout Example

TPS43331-Q1 pcb_layout_lvsa38.gif Figure 41. PCB Layout

Power Dissipation Derating

The power dissipation curve (see Figure 42) is based on attachment of the exposed power pad to the printed circuit board with multi layer FR4. The data is based of JEDEC JESD 51-5 standard board with thermal vias and high-K profile. The user must review PowerPAD Thermally Enhanced Package Application Report for recommended method of exposed pad attachment.

TPS43331-Q1 g_power_derating_lvsa38.gif Figure 42. Power Dissipation Derating