SLVS500D DECEMBER 2003 – June 2019 TPS54110
PRODUCTION DATA.
Refer to the PDF data sheet for device specific package drawings
The important design parameters for the output capacitor are dc voltage, ripple current, and equivalent series resistance (ESR). The dc-voltage and ripple-current ratings must not be exceeded. The ESR rating is important because along with the inductor current it determines the output ripple voltage level. The actual value of the output capacitor is not critical, but some practical limits do exist. Consider the relationship between the desired closed-loop crossover frequency of the design and LC corner frequency of the output filter. In general, it is desirable to keep the closed-loop crossover frequency at less than 1/5 of the switching frequency. With high switching frequencies such as the 700 kHz frequency of this design, internal circuit limitations of the TPS54110 limit the practical maximum crossover frequency to about 100 kHz. To allow adequate phase gain in the compensation network, set the LC corner frequency to approximately one decade below the closed-loop crossover frequency. This limits the minimum capacitor value for the output filter to:
where
For a desired crossover of 60 kHz, K=10 and a 6.8 μH inductor, the minimum value for the output capacitor is 100 μF. The selected output capacitor must be rated for a voltage greater than the desired output voltage plus one half the ripple voltage. Any derating factors must also be included. The maximum RMS ripple current in the output capacitor is given by Equation 11:
where
The maximum ESR of the output capacitor is determined by the allowable output ripple specified in the initial design parameters. The output ripple voltage is the inductor ripple current times the ESR of the output filter so the maximum specified ESR as listed in the capacitor data sheet is given by Equation 12:
For this design example, a single 100-µF output capacitor is chosen for C2. The calculated RMS ripple current is 80 mA and the maximum ESR required is 87 mΩ. An example of a suitable capacitor is the Sanyo Poscap 6TPC100M, rated at 6.3 V with a maximum ESR of 45 mΩ and a ripple-current rating of 1.7 A.
Other capacitor types work well with the TPS54110, depending on the needs of the application.