SLVSD26B April   2016  – April 2021 TPS54202

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed-Frequency PWM Control
      2. 7.3.2  Pulse Skip Mode
      3. 7.3.3  Error Amplifier
      4. 7.3.4  Slope Compensation and Output Current
      5. 7.3.5  Enable and Adjusting Under Voltage Lockout
      6. 7.3.6  Safe Startup into Pre-Biased Outputs
      7. 7.3.7  Voltage Reference
      8. 7.3.8  Adjusting Output Voltage
      9. 7.3.9  Internal Soft-Start
      10. 7.3.10 Bootstrap Voltage (BOOT)
      11. 7.3.11 Overcurrent Protection
        1. 7.3.11.1 High-Side MOSFET Overcurrent Protection
        2. 7.3.11.2 Low-Side MOSFET Overcurrent Protection
      12. 7.3.12 Spread Spectrum
      13. 7.3.13 Output Overvoltage Protection (OVP)
      14. 7.3.14 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Normal Operation
      2. 7.4.2 Eco-mode Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 TPS54202 8-V to 28-V Input, 5-V Output Converter
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Input Capacitor Selection
        2. 8.2.3.2 Bootstrap Capacitor Selection
        3. 8.2.3.3 Output Voltage Set Point
        4. 8.2.3.4 Undervoltage Lockout Set Point
        5. 8.2.3.5 Output Filter Components
          1. 8.2.3.5.1 Inductor Selection
          2. 8.2.3.5.2 Output Capacitor Selection
          3. 8.2.3.5.3 Feed-Forward Capacitor
      4. 8.2.4 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Enable and Adjusting Under Voltage Lockout

The EN pin provides electrical on and off control of the device. When the EN pin voltage exceeds the threshold voltage, the device begins operation. If the EN pin voltage is pulled below the threshold voltage, the regulator stops switching and enters the low-quiescent (IQ) state.

The EN pin has an internal pullup-current source which allows the user to float the EN pin to enable the device. If an application requires control of the EN pin, use open-drain or open-collector output logic to interface with the pin.

The device implements internal undervoltage-lockout (UVLO) circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 480 mV.

If an application requires a higher UVLO threshold on the VIN pin, then the EN pin can be configured as shown in Figure 7-1. When using the external UVLO function, setting the hysteresis at a value greater than 500 mV is recommended.

The EN pin has a small pull-up current, Ip, which sets the default state of the pin to enable when no external components are connected. The pull-up current is also used to control the voltage hysteresis for the UVLO function because it increases by Ih when the EN pin crosses the enable threshold. Use Equation 1 and Equation 2 to calculate the values of R4 and R5 for a specified UVLO threshold.

GUID-E2BBD0C4-CC96-4BCF-8A5E-47601DF7CBC2-low.gif Figure 7-1 Adjustable VIN Undervoltage Lockout
Equation 1. GUID-B5509B39-BFAD-4C1A-B929-927C8EC19401-low.gif

Where:

Ip = 0.7 µA
Ih = 1.55 µA
VENfalling = 1.19 V
VENrising = 1.22 V

Equation 2. GUID-F1E1F0E3-2C62-4423-BFEA-0A704EEF1426-low.gif