SLVSFW7 September   2022 TPS544C26

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Internal VCC LDO and Using an External Bias on VCC/VDRV Pin
      2. 7.3.2  Input Undervoltage Lockout (UVLO)
        1. 7.3.2.1 Fixed VCC_OK UVLO
        2. 7.3.2.2 Fixed VDRV UVLO
        3. 7.3.2.3 Programmable PVIN UVLO
        4. 7.3.2.4 Enable
      3. 7.3.3  Differential Remote Sense and Internal Feedback Divider
      4. 7.3.4  Set the Output Voltage and VID Table
      5. 7.3.5  Startup and Shutdown
      6. 7.3.6  Dynamic Voltage Slew Rate
      7. 7.3.7  Adaptive Voltage Positioning (Droop) and DC Load Line (DCLL)
      8. 7.3.8  Loop Compensation
      9. 7.3.9  Set Switching Frequency
      10. 7.3.10 Switching Node (SW)
      11. 7.3.11 Overcurrent Limit and Low-side Current Sense
      12. 7.3.12 Negative Overcurrent Limit
      13. 7.3.13 Zero-Crossing Detection
      14. 7.3.14 Input Overvoltage Protection
      15. 7.3.15 Output Overvoltage and Undervoltage Protection
      16. 7.3.16 Overtemperature Protection
      17. 7.3.17 VR Ready
      18. 7.3.18 Catastrophic Fault Alert: CAT_FAULT#
      19. 7.3.19 Telemetry
      20. 7.3.20 I2C Interface General Description
        1. 7.3.20.1 Setting the I2C Address
        2. 7.3.20.2 I2C Write Protection
        3. 7.3.20.3 I2C Registers With Special Handling
    4. 7.4 Device Functional Modes
      1. 7.4.1 Forced Continuous-Conduction Mode
      2. 7.4.2 Auto-Skip Eco-mode™ Light Load Operation
      3. 7.4.3 Powering the Device From a 12-V Bus
      4. 7.4.4 Powering the Device From a Split-rail Configuration
    5. 7.5 Programming
      1. 7.5.1 Supported I2C Registers
      2. 7.5.2 Support of Intel SVID Interface
    6. 7.6 Register Maps
      1. 7.6.1  (01h) OPERATION
      2. 7.6.2  (02h) ON_OFF_CONFIG
      3. 7.6.3  (03h) CLEAR_FAULTS
      4. 7.6.4  (15h) STORE_USER_ALL
      5. 7.6.5  (16h) RESTORE_USER_ALL
      6. 7.6.6  (33h) FREQUENCY_SWITCH
      7. 7.6.7  (35h) VIN_ON
      8. 7.6.8  (36h) VIN_OFF
      9. 7.6.9  (40h) VOUT_OV_FAULT_LIMIT
      10. 7.6.10 (41h) VOUT_OV_FAULT_RESPONSE
      11. 7.6.11 (42h) VOUT_OV_WARN_LIMIT
      12. 7.6.12 (43h) VOUT_UV_WARN_LIMIT
      13. 7.6.13 (44h) VOUT_UV_FAULT_LIMIT
      14. 7.6.14 (45h) VOUT_UV_FAULT_RESPONSE
      15. 7.6.15 (46h) IOUT_OC_FAULT_LIMIT
      16. 7.6.16 (4Fh) OT_FAULT_LIMIT
      17. 7.6.17 (50h) OT_FAULT_RESPONSE
      18. 7.6.18 (51h) OT_WARN_LIMIT
      19. 7.6.19 (55h) VIN_OV_FAULT_LIMIT
      20. 7.6.20 (60h) TON_DELAY
      21. 7.6.21 (61h) TON_RISE
      22. 7.6.22 (64h) TOFF_DELAY
      23. 7.6.23 (65h) TOFF_FALL
      24. 7.6.24 (6Bh) PIN_OP_WARN_LIMIT
      25. 7.6.25 (7Ah) STATUS_VOUT
      26. 7.6.26 (7Bh) STATUS_IOUT
      27. 7.6.27 (7Ch) STATUS_INPUT
      28. 7.6.28 (7Dh) STATUS_TEMPERATURE
      29. 7.6.29 (80h) STATUS_MFR_SPECIFIC
      30. 7.6.30 (88h) READ_VIN
      31. 7.6.31 (89h) READ_IIN
      32. 7.6.32 (8Bh) READ_VOUT
      33. 7.6.33 (8Ch) READ_IOUT
      34. 7.6.34 (8Dh) READ_TEMPERATURE_1
      35. 7.6.35 (97h) READ_PIN
      36. 7.6.36 (A0h) SYS_CFG_USER1
      37. 7.6.37 (A2h) I2C_ADDR
      38. 7.6.38 (A3h) SVID_ADDR
      39. 7.6.39 (A4h) IMON_CAL
      40. 7.6.40 (A5h) IIN_CAL
      41. 7.6.41 (A6h) VOUT_CMD
      42. 7.6.42 (A7h) VID_SETTING
      43. 7.6.43 (A8h) I2C_OFFSET
      44. 7.6.44 (A9h) COMP1_MAIN
      45. 7.6.45 (AAh) COMP2_MAIN
      46. 7.6.46 (ABh) COMP1_ALT
      47. 7.6.47 (ACh) COMP2_ALT
      48. 7.6.48 (ADh) COMP3
      49. 7.6.49 (AFh) DVS_CFG
      50. 7.6.50 (B0h) DVID_OFFSET
      51. 7.6.51 (B1h) REG_LOCK
      52. 7.6.52 (B3h) PIN_SENSE_RES
      53. 7.6.53 (B4h) IOUT_NOC_LIMIT
      54. 7.6.54 (B5h) USER_DATA_01
      55. 7.6.55 (B6h) USER_DATA_02
      56. 7.6.56 (BAh) STATUS1_SVID
      57. 7.6.57 (BBh) STATUS2_SVID
      58. 7.6.58 (BCh) CAPABILITY
      59. 7.6.59 (BDh) EXT_CAPABILITY_VIDOMAX_H
      60. 7.6.60 (BEh) VIDOMAX_L
      61. 7.6.61 (C0h) ICC_MAX
      62. 7.6.62 (C1h) TEMP_MAX
      63. 7.6.63 (C2h) PROTOCOL_ID_SVID
      64. 7.6.64 (C6h) VENDOR_ID
      65. 7.6.65 (C8h) PRODUCT_ID
      66. 7.6.66 (C9h) PRODUCT_REV_ID
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Inductor Selection
        2. 8.2.3.2 Input Capacitor Selection
        3. 8.2.3.3 Output Capacitor Selection
        4. 8.2.3.4 VCC/VRDV Bypass Capacitor
        5. 8.2.3.5 BOOT Capacitor Selection
        6. 8.2.3.6 RSENSE Selection
        7. 8.2.3.7 VINSENP and VINSENN Capacitor Selection
        8. 8.2.3.8 VRRDY Pullup Resistor Selection
        9. 8.2.3.9 I2C Address Resistor Selection
      4. 8.2.4 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Thermal Performance on TPS544C26EVM
  9. Device and Documentation Support
    1. 9.1 Documentation Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Telemetry

The telemetry sub-system in the controller core supports the following measurements:

  • Input voltage (direct measurement)
  • Input current (direct measurement)
  • Output voltage (direct measurement)
  • Output current (direct measurement)
  • Controller die temperature (direct measurement)
  • Input Power (Calculation, the product of the input voltage and the input current)

The ADC output is a single conversion of each measurement without rolling window averaging for fast refresh rate of these key system parameter. All above parameters are measured sequentially while the Input current and Output current are measured more often than the others. This sequence design allows each IIN or IOUT telemetry value to be updated within 95 µs, while each of the rest of telemetry value to be updated within 190 µs.

Input Power Telemetry (VIN/IIN/PIN)

The input voltage sense telemetry senses the voltage level on pin 4 VINSENM. The device offers internal divider to minimize the external component count and save solution size. The VIN reporting range is limited from 8 V to 16 V to improve the reporting resolution. For any VIN value less than 8 V, the VIN telemetry reports 8 V. For any VIN value higher than 16 V, the VIN telemetry reports 16 V. For example, the READ_VIN reports 8 V for a VIN = 5 V condition. The VIN conversion equation is:

Equation 1. V I N = R E A D _ V I N × 0.03125 + 8

Where

  • VIN is the voltage level seen on pin 4 VINSENM
  • READ_VIN is the I2C (88h) READ_VIN register value in decimal

The input current sense telemetry senses the differntial voltage level across pin 3 VINSENP and pin 4 VINSENM. A high accuracy sensing resistor in series with the input bus is commonly used for this feature. Together with the setting in (B3h) PIN_SENSE_RES register, the ADC converts the sensed differential voltage to input current in amp. The device offers internal gain stage to minimize the external component count and save solution size. Given the sensed differential voltage is in millivolts range and to avoid impact from the switching noise on the input bus, a ceramic bypass capacitor is required on each pin (pin 3 VINSENP and pin 4 VINSENM) referring to PGND and the recommended value is at least 100 pF with X7R temperature characterisitic. The IIN conversion equation is:

Equation 2. I I N = R E A D _ I I N   × I I N _ M A X 256

Where

  • IIN is the input current level flowing through the choosen IIN sensing resistor
  • READ_IIN is the I2C (89h) READ_IIN register value in decimal
  • IIN_MAX is a maximum input current value selected in I2C (B3h) PIN_SENSE_RES register

The input power reported in (97h) READ_PIN register is a simple calculation, which is the product of the measured raw input voltage and the measured raw input current. The calculation does not use the register value in (88h) READ_VIN and (89h) READ_IIN. The PIN conversion equation is:

Equation 3. P I N = R E A D _ P I N   × P I N _ M A X 25 5

Where

  • PIN is the calculated input power value
  • READ_PIN is the I2C (97h) READ_PIN register value in decimal
  • PIN_MAX is a maximum input power value selected in I2C (6Bh) PIN_OP_WARN_LIMIT register

When input power feature is not used, follow below connection for pin 3 VINSENP and pin 4 VINSENM so that the device can report the input voltage level on PVIN node:

  1. Short pin 3 VINSENP to pin 4 VINSENM,
  2. Place a 0.1 µF ceramic bypass capacitor on pin 4 VINSENM referring to AGND,
  3. Connect pin 4 VINSENM to PVIN node of TPS544C26 device.

VOUT and IOUT Telemetry

The output voltage sense telemetry senses the differential voltage across VOSNS to GOSNS pin. The conversion equation for VOUT is related with VOUT step (5 mV or 10 mV) which is defined by PROTOCOL_ID bits in I2C (C2h) PROTOCOL_ID_SVID register.

The VOUT conversion equation for 5 mV step is:

Equation 4. V O U T = R E A D _ V O U T × 0.00625 + 0.125

The VOUT conversion equation for 10 mV step is:

Equation 5. VOUT=READ_VOUT×0.0125+0.250

Where

  • VOUT is the sensed output voltage (VOSNS−GOSNS)
  • READ_VOUT is the I2C (8Bh) READ_VOUT register value in decimal

The output current sense telemetry senses the average of low-side FET current from the start to the end of each low-side FET on time which provides the average inductor current. To achieve high accuracy and wide report range, the device automatically sets the current sense gain based on ICC_MAX setting in (C0h) ICC_MAX register. When the ICC_MAX is equal or greater than 15 A, the current sense gain is set to a smaller value to achieve wide report range. When the ICC_MAX is equal or less than 10 A, the current sense circuit uses a higher gain to get a significant amplitude and achieve good accuracy. The change of gain setting does not affect the positive overcurrent limit (OCL) threshold but affect the negative overcurrent (NOC) threshold. The IOUT conversion equation is:

Equation 6. IOUT=READ_IOUT ×ICC_MAX255

Where

  • IOUT is the DC output current flowing from the output capacitors to the load
  • READ_IOUT is the I2C (8Ch) READ_IOUT register value in decimal
  • ICC_MAX is a full-scale value for IOUT selected in I2C (C0h) ICC_MAX register

IC Temperature Telemetry

The die temperature sense telemetry senses the controller die temperature. The power stage (PS) die implementes its own over-temperature protection and the PS die temperature is not reported through temetry sub-system. The IC Temperature conversion equation is:

Equation 7. T E M P = R E A D _ T E M P E R A T U R E _ 1 40

Where

  • TEMP is the controller die temperature
  • READ_TEMPERATURE_1 is the I2C (8Dh) READ_TEMPERATURE_1 register value in decimal