SLVSGP3A May   2023  – February 2024 TPS54KB20

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Internal VCC LDO and Using External Bias On the VCC Pin
      2. 6.3.2  Enable
      3. 6.3.3  Adjustable Soft Start
      4. 6.3.4  Power Good
      5. 6.3.5  Output Voltage Setting
      6. 6.3.6  Remote Sense
      7. 6.3.7  D-CAP4 Control
      8. 6.3.8  Multifunction Select (MSEL) Pin
      9. 6.3.9  Low-side MOSFET Zero-Crossing
      10. 6.3.10 Current Sense and Positive Overcurrent Protection
      11. 6.3.11 Low-side MOSFET Negative Current Limit
      12. 6.3.12 Overvoltage and Undervoltage Protection
      13. 6.3.13 Output Voltage Discharge
      14. 6.3.14 UVLO Protection
      15. 6.3.15 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Auto-Skip Eco-mode Light Load Operation
      2. 6.4.2 Forced Continuous-Conduction Mode
      3. 6.4.3 Powering the Device From a Single Bus
      4. 6.4.4 Powering the Device From a Split-rail Configuration
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1  Output Voltage Setting Point
        2. 7.2.2.2  Choose the Switching Frequency and the Operation Mode
        3. 7.2.2.3  Choose the Inductor
        4. 7.2.2.4  Set the Current Limit (ILIM)
        5. 7.2.2.5  Choose the Output Capacitor
        6. 7.2.2.6  RAMP Selection
        7. 7.2.2.7  Choose the Input Capacitors (CIN)
        8. 7.2.2.8  Soft-Start Capacitor (SS Pin)
        9. 7.2.2.9  EN Pin Resistor Divider
        10. 7.2.2.10 VCC Bypass Capacitor
        11. 7.2.2.11 BOOT Capacitor
        12. 7.2.2.12 RC Snubber
        13. 7.2.2.13 PG Pullup Resistor
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Choose the Inductor

To calculate the value of the output inductor (LOUT), use Equation 12. The output capacitor filters the inductor-ripple current (IRIPPLE), Equation 13. Therefore, selecting a high inductor-ripple current impacts the selection of the output capacitor because the output capacitor must have a ripple-current rating equal to or greater than the inductor-ripple current. Larger ripple current increases output ripple voltage, but improves signal-to-noise ratio and helps to stabilize operation. Generally speaking, the inductance value must set the ripple current at approximately 15% to 40% of the maximum output current for a balanced performance.

For this design, the inductor-ripple current is set to 30% of 25A output current. With a 800kHz switching frequency, 16V as maximum VIN, and 3.3V as the output voltage, the calculated inductance is 0.437μH. A nearest standard value of 0.47µH is chosen.

Equation 12. L = V I N m a x - V O U T × V O U T I R I P P L E × V I N m a x × f S W = 16   V - 3.3   V × 3.3   V 0.3 × 25 A × 16   V × 800   k H z = 0.437   μ H

The inductor requires a low DCR to achieve good efficiency. The inductor also requires enough room above peak inductor current before saturation. The peak inductor current is estimated using Equation 14. Peak inductor current under maximum VIN is calculated as 28.5A. Equation 15 calculates the RMS current in the inductor and the heat current rating of the inductor must be greater than this.

Equation 13. I R I P P L E = V I N m a x - V O U T × V O U T L × V I N m a x × f S W = 16   V - 3.3   V × 3.3   V 0.47 μ H × 16   V × 800   k H z = 7   A
Equation 14. I L ( P E A K ) = I O U T + I R I P P L E 2 = 25   A + 7   A 2 = 28.5   A
Equation 15. I L R M S = I O U T 2 + I R I P P L E 2 12 = 25   A 2 + 7   A 2 12 = 25.08   A