SLVSGQ1B January   2022  – January 2024 TPS61376

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 VCC Power Supply
      2. 6.3.2 Enable and Programmable UVLO
      3. 6.3.3 Soft Start and Inrush Current Control During Start-Up
      4. 6.3.4 Switching Frequency
      5. 6.3.5 Adjustable input average Current Limit
      6. 6.3.6 Shut Down and Load Disconnect
      7. 6.3.7 Overvoltage Protection
      8. 6.3.8 Output Short Protection
      9. 6.3.9 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 PWM Mode
      2. 6.4.2 Auto PFM Mode
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Setting Output Voltage
        2. 7.2.2.2 Inductor Selection
        3. 7.2.2.3 Bootstrap Capacitor Selection
        4. 7.2.2.4 Input Capacitor Selection
        5. 7.2.2.5 Output Capacitor Selection
        6. 7.2.2.6 Diode Selection
        7. 7.2.2.7 Loop Stability
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
        1. 7.4.2.1 Thermal Considerations
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bootstrap Capacitor Selection

The bootstrap capacitor between the BST and SW pin supplies the gate current to charge the ISO FET device gate during the turn on of each cycle. The gate current also supplies charge for the bootstrap capacitor. The recommended value of the bootstrap capacitor is 0.47μF to 1μF. CBST must be a good quality, low-ESR ceramic capacitor located at the pins of the device to minimize potentially damaging voltage transients caused by trace inductance. A value of 0.47μF was selected for this design example.