SLVSB70C October   2013  – January 2021 TPS62085 , TPS62086 , TPS62087

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power Save Mode
      2. 8.3.2 100% Duty Cycle Low Dropout Operation
      3. 8.3.3 Soft Start
      4. 8.3.4 Switch Current Limit and Hiccup Short-Circuit Protection
      5. 8.3.5 Undervoltage Lockout
      6. 8.3.6 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Enable and Disable
      2. 8.4.2 Power Good
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Custom Design With WEBENCH® Tools
        2. 9.2.2.2 Setting The Output Voltage
        3. 9.2.2.3 Output Filter Design
        4. 9.2.2.4 Inductor Selection
        5. 9.2.2.5 Capacitor Selection
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Custom Design With WEBENCH® Tools
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor Selection

The main parameter for the inductor selection is the inductor value and then the saturation current of the inductor. To calculate the maximum inductor current under static load conditions, Equation 4 is given.

Equation 4. GUID-B3B6D6B7-0FC8-47F9-B456-01FAB0072F0F-low.gif

where

  • IOUT,MAX = Maximum output current
  • ΔIL = Inductor current ripple
  • fSW = Switching frequency
  • L = Inductor value

TI recommends choosing the saturation current for the inductor 20% to 30% higher than the IL,MAX, out of Equation 4. A higher inductor value is also useful to lower ripple current but increases the transient response time as well. The following inductors are recommended to be used in designs.

Table 9-4 List of Recommended Inductors
INDUCTANCE
[µH]
CURRENT RATING
[A]
DIMENSIONS
L × W × H [mm3]
DC RESISTANCE
[mΩ typical]
PART NUMBER
0.476.64 × 4 × 1.57.6Coilcraft XFL4015-471
0.476.73.2 × 2.5 × 1.223Murata DFE322512F-R47N
15.14 × 4 × 210.8Coilcraft XFL4020-102