SLVS607D September   2005  – January 2016 TPS65020

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Electrical Characteristics: Supply Pins VCC, VINDCDC1, VINDCDC2, VINDCDC3
    7. 7.7  Electrical Characteristics: Supply Pins VBACKUP, VSYSIN, VRTC, VINLDO
    8. 7.8  Electrical Characteristics: VDCDC1 Step-Down Converter
    9. 7.9  Electrical Characteristics: VDCDC2 Step-Down Converter
    10. 7.10 Electrical Characteristics: VDCDC3 Step-Down Converter
    11. 7.11 Timing Requirements
    12. 7.12 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  VRTC Output and Operation With or Without Backup Battery
      2. 8.3.2  Step-Down Converters, VDCDC1, VDCDC2, and VDCDC3
      3. 8.3.3  Power Save Mode Operation
      4. 8.3.4  Low Ripple Mode
      5. 8.3.5  Soft-Start
      6. 8.3.6  100% Duty Cycle Low-Dropout Operation
      7. 8.3.7  Active Discharge When Disabled
      8. 8.3.8  Power-Good Monitoring
      9. 8.3.9  Low-Dropout Voltage Regulators
      10. 8.3.10 Undervoltage Lockout
      11. 8.3.11 Power-Up Sequencing
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 System Reset + Control Signals
        1. 8.5.1.1 PB_IN and PB_OUT
        2. 8.5.1.2 Interrupt Management and the INT Pin
      2. 8.5.2 Serial Interface
    6. 8.6 Register Maps
      1. 8.6.1 VERSION Register Address: 00h (Read Only)
      2. 8.6.2 PGOODZ Register Address: 01h (Read Only)
      3. 8.6.3 MASK Register Address: 02h (Read and Write), Default Value: C0h
      4. 8.6.4 REG_CTRL Register Address: 03h (Read and Write), Default Value: FFh
      5. 8.6.5 CON_CTRL Register Address: 04h (Read and Write), Default Value: B0h
      6. 8.6.6 CON_CTRL2 Register Address: 05h (Read and Write), Default Value: 40h
      7. 8.6.7 DEFCORE. Register Address: 06h (Read and Write), Default Value: 14h/1Eh
      8. 8.6.8 DEFSLEW Register Address: 07h (Read and Write), Default Value: 06h
      9. 8.6.9 LDO_CTRL Register Address: 08h (Read and Write), Default Value: 23h
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Voltage Connection
      2. 9.1.2 Unused Regulators
      3. 9.1.3 Implementing a Push-Button On-Off Function Using PB_IN and PB_OUT
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection for the DC-DC Converters
        2. 9.2.2.2 Output Capacitor Selection
        3. 9.2.2.3 Input Capacitor Selection
        4. 9.2.2.4 Output Voltage Selection
        5. 9.2.2.5 VRTC Output
        6. 9.2.2.6 LDO1 and LDO2
        7. 9.2.2.7 TRESPWRON
        8. 9.2.2.8 VCC Filter
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Requirements for Supply Voltages Below 3.0 V
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VI Input voltage on all pins except AGND and PGND pins with respect to AGND –0.3 7 V
Current at VINDCDC1, L1, PGND1, VINDCDC2, L2, PGND2, VINDCDC3, L3, PGND3 2000 mA
Peak current at all other pins 1000 mA
TA Operating free-air temperature –40 85 °C
TJ Maximum junction temperature 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Input voltage step-down convertors and VCC pin
(VINDCDC1, VINDCDC2, VINDCDC3, VCC); pins must be tied to the same voltage rail
2.5 6 V
VO Output voltage for VDCDC1 step-down convertor(1) 0.6 VINDCDC1 V
Output voltage for VDCDC2 step-down convertor(1) 0.6 VINDCDC2
Output voltage for VDCDC3 (core) step-down convertor(1) 0.6 VINDCDC3
VI Input voltage for LDOs (VINLDO1, VINLDO2) 1.5 6.5 V
VO Output voltage for LDOs (VLDO1, VLDO2) 1 VINLDO1-2 V
IO(DCDC1) Output current at L1 1200 mA
Inductor at L1(2) 2.2 3.3 μH
CI(DCDC1) Input capacitor at VI(DCDC1) (2) 10 μF
CO(DCDC1) Output capacitor at VDCDC1 (2) 10 22 μF
IO(DCDC2) Output current at L2 1000 mA
Inductor at L2 (2) 2.2 3.3 μH
CI(DCDC2) Input capacitor at VDCDC2 (2) 10 μF
CO(DCDC2) Output capacitor at VDCDC2 (2) 10 22 μF
IO(DCDC3) Output current at L3 800 mA
Inductor at L3 (2) 2.2 3.3 μH
CI(DCDC3) Input capacitor at VDCDC3 (2) 10 μF
CO(DCDC3) Output capacitor at VDCDC3 (2) 10 22 μF
CI(VCC) Input capacitor at VCC (2) 1 μF
Ci(VINLDO) Input capacitor at VINLDO (2) 1 μF
CO(VLDO1-2) Output capacitor at VLDO1, VLDO2 (2) 2.2 μF
IO(VLDO1-2) Output current at VLDO1, VLDO2 200 mA
CO(VRTC) Output capacitor at VRTC (2) 4.7 μF
TA Operating ambient temperature –40 85 °C
TJ Operating junction temperature –40 125 °C
Resistor from VINDCDC3, VINDCDC2, VINDCDC1 to VCC used for filtering(3) 1 10 Ω
(1) When using an external resistor divider at DEFDCDC3, DEFDCDC2, DEFDCDC1
(2) See Application and Implementation for more information.
(3) Up to 3 mA can flow into VCC when all 3 converters are running in PWM. This resistor causes the UVLO threshold to be shifted accordingly.

7.4 Thermal Information

THERMAL METRIC(1) TPS65020 UNIT
RHA (VQFN)
40 PINS
RθJA Junction-to-ambient thermal resistance 31.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 18.2 °C/W
RθJB Junction-to-board thermal resistance 6.6 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 6.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT
CONTROL SIGNALS: SCLK, SDAT (INPUT), DCDC1_EN, DCDC2_EN, DCDC3_EN, LDO_EN
VIH High level input voltage Rpullup = 4.7 kΩ, pulled to VRTC 1.3 VCC V
VIL Low level input voltage Rpullup = 4.7 kΩ, pulled to VRTC 0 0.4 V
IH Input bias current 0.01 0.1 μA
CONTROL SIGNALS: HOT_RESET
VIH High level input voltage 1.3 VCC V
VIL Low level input voltage 0 0.4 V
Pullup resistor at HOT_RESET, connected to VCC 1000
tdeglitch Deglitch time at HOT_RESET 25 30 35 ms
CONTROL SIGNALS: LOWBAT, PWRFAIL, RESPWRON, INT, SDAT (OUTPUT)
VOH High level output voltage 6 V
VOL Low level output voltage IIL = 5 mA 0 0.3 V
Duration of low pulse at RESPWRON External capacitor 1 nF 100 ms
ICONST Internal charge / discharge current on pin TRESPWRON Used for generating RESPWRON delay 1.7 2 2.3 μA
TRESPWRON_LOWTH Internal lower comparator threshold on pin TRESPWRON Used for generating RESPWRON delay 0.225 0.25 0.275 V
TRESPWRON_UPTH Internal upper comparator threshold on pin TRESPWRON Used for generating RESPWRON delay 0.97 1 1.103 V
Resetpwron threshold VRTC falling –3% 2.4 3% V
Resetpwron threshold VRTC rising –3% 2.52 3% V
ILK Leakage current Output inactive high 0.1 μA
VLDO1 AND VLDO2 LOW-DROPOUT REGULATORS
VI Input voltage range for LDO1, 2 1.5 6.5 V
VO LDO1 output voltage range 1 3.3 V
VO LDO2 output voltage range 1 3.3 V
IO Maximum output current for LDO1, LDO2 200 mA
I(SC) LDO1 and LDO2 short-circuit
Current limit
VLDO1 = GND, VLDO2 = GND 400 mA
Minimum voltage drop at LDO1, LDO2 IO = 50 mA, VINLDO = 1.8 V 120 mV
IO = 50 mA, VINLDO = 1.5 V 65 150
IO = 200 mA, VINLDO = 1.8 V 300
Output voltage accuracy for LDO1, LDO2 IO = 10 mA –2% 1%
Line regulation for LDO1, LDO2 VINLDO1,2 = VLDO1, 2 + 0.5 V
(min. 2.5 V) to 6.5 V, IO = 10 mA
–1% 1%
Load regulation for LDO1, LDO2 IO = 0 mA to 50 mA –1% 1%
Regulation time for LDO1, LDO2 Load change from 10% to 90% 10 μs
ANALOGIC SIGNALS DEFDCDC1, DEFDCDC2, DEFDCDC3
VIH High level input voltage 1.3 VCC V
VIL Low level input voltage 0 0.1 V
IH Input bias current 0.001 0.05 μA
LOGIC SIGNALS PB_IN; PB_OUT
VOL Low level output voltage at PB_OUT IOL = 20 mA 0.5 V
VOH High level output voltage PB_OUT 6 V
VIL Low level input voltage PB_IN 0.4 V
VIH High level input voltage PB_IN 1.3 VCC (1) V
II Input leakage current PB_IN 1 μA
THERMAL SHUTDOWN
T(SD) Thermal shutdown Increasing junction temperature 160 °C
Thermal shutdown hysteresis Decreasing junction temperature 20 °C
INTERNAL UNDERVOLTAGE LOCK OUT
UVLO Internal UVLO VCC falling –2% 2.35 2% V
V(UVLO_HYST) Internal UVLO comparator hysteresis 120 mV
VOLTAGE DETECTOR COMPARATORS
Comparator threshold
(PWRFAIL_SNS, LOWBAT_SNS)
Falling threshold –1% 1.0 1% V
Hysteresis 40 50 60 mV
Propagation delay 25-mV overdrive 10 μs
POWER-GOOD
V(PGOODF) VDCDC1, VDCDC2, VDCDC3, VLDO1, VLDO2, decreasing –12% –10% –8%
V(PGOODR) VDCDC1, VDCDC2, VDCDC3, VLDO1, VLDO2, increasing –7% –5% –3%
(1) The input voltage can go as high as 6 V. If the input voltage exceeds VCC, an input current of (V(PB_IN) – 0.7 V – VCC) / 10 kΩ flows.
(2) Typical values are at TA = 25°C

7.6 Electrical Characteristics: Supply Pins VCC, VINDCDC1, VINDCDC2, VINDCDC3

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
I(qPFM) Operating quiescent current, PFM All 3 DCDC converters enabled, zero load and no switching, LDOs enabled VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
85 100 μA
All 3 DCDC converters enabled, zero load and no switching, LDOs enabled VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
78 90
DCDC1 and DCDC2 converters enabled, zero load and no switching, LDOs off VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
57 70
DCDC1 converter enabled, zero load and no switching, LDOs off VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
43 55
II Current into VCC; PWM All 3 DCDC converters enabled and running in PWM, LDOs off VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
2 3 mA
DCDC1 and DCDC2 converters enabled and running in PWM, LDOs off VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
1.5 2.5
DCDC1 converter enabled and running in PWM, LDOs off VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
0.85 2
I(q) Quiescent current All converters disabled, LDOs off VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
23 33 μA
All converters disabled, LDOs off VCC = 2.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
3.5 5 μA
All converters disabled, LDOs off VCC = 3.6 V, VBACKUP = 0 V;
V(VSYSIN) = 0 V
43 μA
(1) Typical values are at TA = 25°C

7.7 Electrical Characteristics: Supply Pins VBACKUP, VSYSIN, VRTC, VINLDO

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT
VBACKUP, VSYSIN, VRTC
I(q) Operating quiescent current VBACKUP = 3 V, VSYSIN = 0 V;
VCC = 2.6 V, current into VBACKUP
20 33 μA
I(SD) Operating quiescent current VBACKUP < V_VBACKUP, current into VBACKUP 2 3 μA
VRTC LDO output voltage VSYSIN = VBACKUP = 0 V, IO = 0 mA 3 V
IO Output current for VRTC VSYSIN < 2.57 V and VBACKUP < 2.57 V 20 mA
VRTC short-circuit current limit VRTC = GND; VSYSIN = VBACKUP = 0 V 100 mA
Maximum output current at VRTC for RESPWRON = 1 VRTC > 2.6 V, VCC = 3 V;
VSYSIN = VBACKUP = 0 V
30 mA
VO Output voltage accuracy for VRTC VSYSIN = VBACKUP = 0 V; IO = 0 mA ±1%
Line regulation for VRTC VCC = VRTC + 0.5 V to 6.5 V, IO = 5 mA ±1%
Load regulation VRTC IO = 1 mA to 20 mA;
VSYSIN = VBACKUP = 0 V
±2%
Regulation time for VRTC Load change from 10% to 90% 10 μs
Ilkg Input leakage current at VSYSIN VSYSIN < V_VSYSIN 2 μA
rDS(on) of VSYSIN switch 12.5 Ω
rDS(on) of VBACKUP switch 12.5 Ω
Input voltage range at VBACKUP(1) 2.73 3.75 V
Input voltage range at VSYSIN(1) 2.73 3.75 V
VSYSIN threshold VSYSIN falling –3% 2.55 3% V
VSYSIN threshold VSYSIN rising –3% 2.65 3% V
VBACKUP threshold VBACKUP falling –3% 2.55 3% V
VBACKUP threshold VBACKUP falling –3% 2.65 3% V
VINLDO
I(q) Operating quiescent current Current per LDO into VINLDO 16 30 μA
I(SD) Shutdown current Total current for both LDOs into VINLDO, VLDO = 0 V 0.1 1 μA
(1) Based on the requirements for the Intel PXA270 processor.
(2) Typical values are at TA = 25°C

7.8 Electrical Characteristics: VDCDC1 Step-Down Converter

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VI Input voltage range, VINDCDC1 2.5 6 V
IO Maximum output current 1200 mA
I(SD) Shutdown supply current in VINDCDC1 DCDC1_EN = GND 0.1 1 μA
rDS(on) P-channel MOSFET on-resistance VINDCDC1 = V(GS) = 3.6 V 125 261
Ilkg P-channel leakage current VINDCDC1 = 6 V 2 μA
rDS(on) N-channel MOSFET on-resistance VINDCDC1 = V(GS) = 3.6 V 130 260
Ilkg N-channel leakage current V(DS) = 6 V 7 10 μA
Forward current limit (P- and N-channel) 2.5 V < VI(MAIN) < 6 V 1.55 1.75 1.95 A
fS Oscillator frequency 1.3 1.5 1.7 MHz
Fixed output voltage FPWMDCDC1=0 3 V VINDCDC1 = 3.3 V to 6 V;
0 mA ≤ IO  ≤ 1.2 A
–2% 2%
3.3 V VINDCDC1 = 3.6 V to 6 V;
0 mA ≤ IO  ≤ 1.2 A
–2% 2%
Fixed output voltage FPWMDCDC1=1 3 V VINDCDC1 = 3.3 V to 6 V;
0 mA ≤ IO  ≤ 1.2 A
–1% 1%
3.3 V VINDCDC1 = 3.6 V to 6 V;
0 mA ≤ IO  ≤ 1.2 A
–1% 1%
Adjustable output voltage with resistor divider at DEFDCDC1 FPWMDCDC1=0 VINDCDC1 = VDCDC1 +0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 1.2 A –2% 2%
Adjustable output voltage with resistor divider at DEFDCDC1; FPWMDCDC1=1 VINDCDC1 = VDCDC1 +0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 1.2 A –1% 1%
Line Regulation VINDCDC1 = VDCDC1 + 0.3 V (min. 2.5 V) to 6 V; IO = 10 mA 0% V
Load Regulation IO = 10 mA to 1200 mA 0.25% A
Soft-start ramp time VDCDC1 ramping from 5% to 95% of target value 750 μs
Internal resistance from L1 to GND 1
VDCDC1 discharge resistance 300 Ω
(1) Typical values are at TA = 25°C

7.9 Electrical Characteristics: VDCDC2 Step-Down Converter

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VI Input voltage range, VINDCDC2 2.5 6 V
IO Maximum output current 1000 mA
I(SD) Shutdown supply current in VINDCDC2 DCDC2_EN = GND 0.1 1 μA
rDS(on) P-channel MOSFET on-resistance VINDCDC2 = V(GS) = 3.6 V 140 300
Ilkg P-channel leakage current VINDCDC2 = 6 V 2 μA
rDS(on) N-channel MOSFET on-resistance VINDCDC2 = V(GS) = 3.6 V 150 297
Ilkg N-channel leakage current V(DS) = 6 V 7 10 μA
ILIMF Forward current limit (P- and N-channel) 2.5 V < VINDCDC2 < 6 V 1.4 1.55 1.7 A
fS Oscillator frequency 1.3 1.5 1.7 MHz
Fixed output voltage FPWMDCDC2=0 1.8 V VINDCDC2 = 2.5 V to 6 V;
0 mA ≤ IO  ≤ 1 A
–2% 2%
2.5 V VINDCDC2 = 2.8 V to 6 V;
0 mA ≤ IO  ≤ 1 A
–2% 2%
Fixed output voltage FPWMDCDC2=1 1.8 V VINDCDC2 = 2.5 V to 6 V;
0 mA ≤ IO  ≤ 1 A
–2% 2%
2.5 V VINDCDC2 = 2.8 V to 6 V;
0 mA ≤ IO  ≤ 1 A
–1% 1%
Adjustable output voltage with resistor divider at DEFDCDC2 FPWMDCDC2=0 VINDCDC2 = VDCDC2 +0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 1 A –2% 2%
Adjustable output voltage with resistor divider at DEFDCDC2; FPWMDCDC2=1 VINDCDC2 = VDCDC2 +0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 1 A –1% 1%
Line Regulation VINDCDC2 = VDCDC2 + 0.3 V (min. 2.5 V) to 6 V; IO = 10 mA 0% V
Load Regulation IO = 10 mA to 1 mA 0.25% A
Soft-start ramp time VDCDC2 ramping from 5% to 95% of target value 750 μs
Internal resistance from L2 to GND 1
VDCDC2 discharge resistance 300 Ω
(1) Typical values are at TA = 25°C

7.10 Electrical Characteristics: VDCDC3 Step-Down Converter

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VI Input voltage range, VINDCDC3 2.5 6 V
IO Maximum output current 800 mA
I(SD) Shutdown supply current in VINDCDC3 DCDC3_EN = GND 0.1 1 μA
rDS(on) P-channel MOSFET on-resistance VINDCDC3 = V(GS) = 3.6 V 310 698
Ilkg P-channel leakage current VINDCDC3 = 6 V 0.1 2 μA
rDS(on) N-channel MOSFET on-resistance VINDCDC3 = V(GS) = 3.6 V 220 503
Ilkg N-channel leakage current V(DS) = 6 V 7 10 μA
Forward current limit (P- and N-channel) 2.5 V < VINDCDC3 < 6 V 1.05 1.2 1.35 A
fS Oscillator frequency 1.3 1.5 1.7 MHz
Fixed output voltage FPWMDCDC3=0 All VDCDC3 VINDCDC3 = 2.5 V to 6 V;
0 mA ≤ IO  ≤ 600 mA
–2% 2%
Fixed output voltage FPWMDCDC3=1 VINDCDC3 = 2.5 V to 6 V;
0 mA ≤ IO  ≤ 600 mA
–1% 1%
Adjustable output voltage with resistor divider at DEFDCDC3 FPWMDCDC3=0 VINDCDC3 = VDCDC3 +0.4 V (min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 600 mA –2% 2%
Adjustable output voltage with resistor divider at DEFDCDC3; FPWMDCDC3=1 VINDCDC3 = VDCDC3 +0.4 V (min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 600 mA –1% 1%
Line Regulation VINDCDC3 = VDCDC3 + 0.3 V (min. 2.5 V) to 6 V; IO = 10 mA 0% V
Load Regulation IO = 10 mA to 400 mA 0.25% A
Soft-start ramp time VDCDC3 ramping from 5% to 95% of target value 750 μs
Internal resistance from L3 to GND 1
VDCDC3 discharge resistance 300 Ω
(1) Typical values are at TA = 25°C

7.11 Timing Requirements

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
fMAX Clock frequency 400 kHz
twH(HIGH) Clock high time 600 ns
twL(LOW) Clock low time 1300 ns
tR DATA and CLK rise time 300 ns
tF DATA and CLK fall time 300 ns
th(STA) Hold time (repeated) START condition (after this period the first clock pulse is generated) 600 ns
th(DATA) Setup time for repeated START condition 600 ns
th(DATA) Data input hold time 300 ns
tsu(DATA) Data input setup time 300 ns
tsu(STO) STOP condition setup time 600 ns
t(BUF) Bus free time 1300 ns
TPS65020 hot_timing_lvs607.gif Figure 1. HOT_RESET Timing
TPS65020 pu_pd_time_lvs607.gif Figure 2. Power-Up and Power-Down Timing
TPS65020 dvs_timing_lvs607.gif Figure 3. DVS Timing
TPS65020 pb_timing_lvs607.gif Figure 4. PB-ON-OFF Timing
TPS65020 ser_if_time_lvs607.gif Figure 5. Serial I/F Timing

7.12 Typical Characteristics

Table 1. Table of Graphs

FIGURE
η Efficiency vs Output current Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12
Line transient response Figure 13, Figure 14, Figure 15
Load transient response Figure 16, Figure 17, Figure 18
VDCDC2 PFM operation Figure 19
VDCDC2 low ripple PFM operation Figure 20
VDCDC2 PWM operation Figure 21
Startup VDCDC1, VDCDC2 and VDCDC3 Figure 22
Startup LDO1 and LDO2 Figure 23
Line transient response Figure 24, Figure 25, Figure 26
Load transient response Figure 27, Figure 28, Figure 29
TPS65020 eff_33v1_io_lvs607.gif Figure 6. DCDC1: Efficiency vs Output Current
TPS65020 eff_18v1_io_lvs607.gif Figure 8. DCDC2: Efficiency vs Output Current
TPS65020 eff_155v1_io_lvs607.gif Figure 10. DCDC3: Efficiency vs Output Current
TPS65020 eff_13v1_io_lvs607.gif Figure 12. DCDC3: Efficiency vs Output Current
TPS65020 vdcdc2_lt_lvs607.gif Figure 14. VDCDC2 Line Transient Response
TPS65020 vdcdc1_ld_lvs607.gif Figure 16. VDCDC1 Load Transient Response
TPS65020 vdcdc3_ld_lvs607.gif Figure 18. VDCDC3 Load Transient Response
TPS65020 vdcdc2_vo2_lvs607.gif Figure 20. VDCDC2 Output Voltage Ripple
TPS65020 startup_vdc_lvs607.gif Figure 22. Startup VDCDC1, VDCDC2, and VDCDC3
TPS65020 ldo1_lt_lvs607.gif Figure 24. LDO1 Line Transient Response
TPS65020 vrtc_lt_lvs607.gif Figure 26. VRTC Line Transient Response
TPS65020 ldo2_ld_lvs607.gif Figure 28. LDO2 Load Transient Response
TPS65020 eff_33v2_io_lvs607.gif Figure 7. DCDC1: Efficiency vs Output Current
TPS65020 eff_18v2_io_lvs607.gif Figure 9. DCDC2: Efficiency vs Output Current
TPS65020 eff_155v2_io_lvs607.gif Figure 11. DCDC3: Efficiency vs Output Current
TPS65020 vdcdc1_lt_lvs607.gif
Figure 13. VDCDC1 Line Transient Response
TPS65020 vdcdc3_lt_lvs607.gif Figure 15. VDCDC3 Line Transient Response
TPS65020 vdcdc2_ld_lvs607.gif Figure 17. VDCDC2 Load Transient Response
TPS65020 vdcdc2_vo1_lvs607.gif
Figure 19. VDCDC2 Output Voltage Ripple
TPS65020 vdcdc2_vo3_lvs607.gif Figure 21. VDCDC2 Output Voltage Ripple
TPS65020 startup_ldo_lvs607.gif Figure 23. Startup LDO1 and LDO2
TPS65020 ldo2_lt_lvs607.gif Figure 25. LDO2 Line Transient Response
TPS65020 ldo1_ld_lvs607.gif Figure 27. LDO1 Load Transient Response
TPS65020 vrtc_ld_lvs607.gif Figure 29. VRTC Load Transient Response