SLVS658C March 2006 – January 2016 TPS65811
PRODUCTION DATA.
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | 1500 | V |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
AC and USB with respect to AGND1 | 4.35 | 16.5(1) | V | ||
ANLG1,ANLG2 with respect to AGND2 | 0 | 2.6 | V | ||
VIN_LDO35 with respect to AGND2 | See (2) | 4.7 | V | ||
VIN_LDO12 with respect to AGND1 | See (2) | 4.7 | V | ||
VIN_SM1 with respect to PGND1 | See (2) | 4.7 | V | ||
VIN_SM2 with respect to PGND2 | See (2) | 4.7 | V | ||
SM3 with respect to PGND3 | 28 | V | |||
TA | Operating free-air temperature | –40 | 85 | °C | |
TJ(op) | Junction temperature, functional operation ensured | –40 | 125 | °C | |
TJ | Junction temperature, electrical characteristics ensured | 0 | 125 | °C |
THERMAL METRIC(1) | TPS6581x | UNIT | |
---|---|---|---|
RTQ (QFN) | |||
56 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 26.9 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 10.9 | °C/W |
RθJB | Junction-to-board thermal resistance | 4.9 | °C/W |
ψJT | Junction-to-top characterization parameter | 0.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 4.8 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 0.7 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
QUIESCENT CURRENT | ||||||
IBAT(SLEEP) | BAT pin current, sleep mode set | Input power not detected, V(BAT) = 4.2 V, Sleep mode set | 400 | μA | ||
IBAT(DONE) | BAT pin current, charge terminated | Charger function enabled by I2C, termination detected, input power detected and selected |
3 | μA | ||
IBAT(CHGOFF) | BAT pin current, charge function OFF | Charger function disabled by I2C, termination not detected, input power detected and selected | 3 | μA | ||
IINP(CHGOFF) | AC or USB pin current, charge function OFF | Charger function disabled by I2C, termination not detected, input power detected and selected. All integrated supplies and drivers OFF, no load at OUT pin. | 200 | μA | ||
UNDERVOLTAGE LOCKOUT | ||||||
VUVLO | Internal UVLO detection threshold | NO POWER mode set at V(OUT) < VUVLO, V(OUT) decreasing | –3% | 2.5 | 3% | V |
VUVLO_HYS | UVLO detection hysteresis | V(OUT) increasing | 120 | mV | ||
tDGL(UVLO) | UVLO detection deglitch time | Falling voltage only | 5 | ms | ||
SYSTEM LOW VOLTAGE THRESHOLD | ||||||
VLOW_SYS | Minimum system voltage detection threshold | System voltage V(SYS_IN) decreasing, SLEEP mode set if V(SYS_IN) < VLOW_SYS |
0.97 | 1 | 1.03 | V |
VHYS(LOWSYS) | Minimum system voltage detection hysteresis | V(SYS_IN) increasing | 50 | mV | ||
tDGL(LOWSYS) | Minimum system voltage detection deglitch time | V(SYS_IN) decreasing | 5 | ms | ||
THERMAL FAULT | ||||||
TSHUT | Thermal shutdown | Increasing junction temperature | 165 | °C | ||
THYS(SHUT) | Thermal shutdown hysteresis | Decreasing junction temperature | 30 | °C | ||
INTEGRATED SUPPLY POWER FAULT DETECTION | ||||||
VPGOOD | Power-good fault detection threshold | Falling output voltage, applies to all integrated supply outputs. Referenced to the programmed output voltage value | 84% | 90% | 96% | |
VHYS(PGOOD) | Power-good fault detection hysteresis | Rising output voltage, applies to all integrated supply outputs. Referenced to VPGOOD threshold | 3% | 5% | 7% | |
HOT RESET FUNCTION | ||||||
VHRSTON | Low level input voltage | RESET mode set at V(HOT_RESET) < VHRSTON | 0.4 | V | ||
VHRSTOFF | High level input voltage | HOT reset not active at V(HOT_RESET) > VHRSTOFF | 1.3 | V | ||
tDGL(HOTRST) | Hot reset input deglitch | 5 | ms | |||
SYSTEM RESET – OPEN-DRAIN OUTPUT RESPWRON | ||||||
VRSTLO | Low level output voltage | IIL = 10 mA, V(RESPWRON ) < VRSTLO | 0 | 0.3 | V | |
ITRSTPWON | Pullup current source | Internally connected to TRSTPWRON pin | 0.9 | 1 | 1.2 | μA |
KRESET | Reset timer constant | TRESET = KRESET × CTRSTPWON | 1 | ms/nF |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOLTAGE DETECTION THRESHOLDS | |||||||
VIN(DT) | Input Voltage detection threshold | AC detected at V(AC)– V(BAT) > VIN(DT)
USB detected at V(USB)– V(BAT) > VIN(DT) |
190 | mV | |||
VIN(NDT) | Input Voltage removal threshold | AC not detected at V(AC)– V(BAT) < VIN(NDT)
USB not detected at V(USB)– V(BAT) < VIN(NDT) |
125 | mV | |||
tDGL(NDT) | Power not detected deglitch | 22.5 | ms | ||||
VSUP(DT) | Supplement detection threshold | Battery switch ON at V(BAT) – V(OUT) > VSUP(DT) | 60 | mV | |||
VSUP(NDT) | Supplement not detected threshold | Battery switch OFF at V(BAT)– V(OUT) < VSUP(NDT) | 20 | mV | |||
POWER PATH INTEGRATED MOSFETS CHARACTERISTICS | |||||||
VACDO | AC switch dropout voltage | VACDO = V(AC)– V(OUT); V(AC) = 4.75 V AC input current limit set to 2.75 A (typical), IO(OUT) = 1 A |
350 | 375 | mV | ||
VUSBDO | USB switch dropout voltage | VUSBDO = V(USB)– V(OUT); V(USB) = 4.6 V USB input current limit set to 2.75 A (typical) | I(OUT)+ I(BAT)= 0.5 A | 175 | 190 | mV | |
I(OUT)+ I(BAT)= 0.1 A | 35 | 45 | mV | ||||
VBATDODCH | Battery switch dropout voltage, discharge | V(BAT): 3 V → VCH(REG), I(BAT) = –1 A | 60 | 100 | mV | ||
VBATDOCH | Battery switch dropout voltage, charge | Charger on, V(BAT): 3 V → 4.2 V, I(BAT) = 1 A | 60 | 100 | mV | ||
POWER PATH INPUT CURRENT LIMIT | |||||||
IINP(LIM1) | Selected input current limit, applies to USB input only | Selected input switch not in dropout, I2C settings: ISET2 = LO, PSEL = LO | 80 | 100 | mA | ||
IINP(LIM2) | Selected Input current limit, applies to USB input only | Selected input switch not in dropout, I2C settings: ISET2 = HI, PSEL = LO | 400 | 500 | mA | ||
IINP(LIM3) | Selected Input current limit, applies to either AC or USB input | Selected input switch not in dropout, I2C settings: ISET2 = HI OR LO, PSEL = HI |
2.75 | A | |||
SYSTEM REGULATION VOLTAGE | |||||||
VSYS(REG) | Output regulation voltage | VSYS(REG) = V(OUT), DPPM loop not active, selected input current limit not reached. Selected input voltage (AC or USB) > 5.1 V | 4.6 | 4.7 | V | ||
POWER PATH PROTECTION AND RECOVERY FUNCTIONS | |||||||
VINOUTSH | Input-to-output short-circuit detection threshold | AC and USB switches set to OFF if V(OUT) < VINOUTSH | 0.6 | V | |||
RSH(USBSH) | OUT short circuit recovery pullup resistor | V(OUT) < 1 V, internal resistor connected from USB to OUT | 500 | Ω | |||
RSH(ACSH) | OUT short circuit recovery pullup resistor | V(OUT) < 1 V, internal resistor connected from AC to OUT | 500 | Ω | |||
VOVP | Overvoltage detection threshold | Rising voltage, overvoltage detected when V(AC) > VOVP or V(USB) > VOVP |
6 | 6.5 | 6.8 | V | |
Overvoltage detection hysteresis | Falling voltage, relative to detection threshold | 0.1 | V | ||||
VBATOUTSH | Battery-to-output short-circuit detection threshold | BAT switch set to OFF if V(BAT) – V(OUT) > VBATOUTSH | 200 | mV | |||
KBLK(SHBAT) | Battery-to-output short-circuit blanking time constant | V(DPPM) < 1v, tBLK(SHBAT) = KBLK(SHBAT) X CDPPM, CDPPM capacitor is connected from DPPM pin to AGND1 | 1 | mS/nF | |||
ISH(BAT) | OUT short circuit recovery pullup current source | V(BAT) – V(OUT) > VBATOUTSH, Internal current source connected between OUT and BAT | 10 | mA | |||
RSH(BAT) | BAT short circuit recovery resistor | V(BAT)< 1 V, Internal resistor connected from OUT to BAT | 1 | kΩ | |||
RDCH(BAT) | BAT pulldown resistor | Internal resistor connected from BAT to AGND1 when battery is not detected by ANLG1 | 500 | Ω |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
POWER PATH TIMING CHARACTERISTICS, DPPM, AND THERMAL LOOPS NOT ACTIVE, RTMR = 50 kΩ | |||||||
tBOOT | Boot-up time | Measured from input power detection | 120 | 200 | 300 | ms | |
tSW(ACBAT) | Switching from AC to BAT | No USB: measured from V(AC) – V(BAT) < VIN(NDT), USB detected: CE = LO (after CE hold-off time) |
50 | μs | |||
tSW(USBBAT) | Switching from USB to BAT | No AC: measured from V(USB) – V(BAT) < VIN(NDT), USB detected: CE = LO (after CE hold-off time) |
50 | μs | |||
tSW(PSEL) | Switching from USB to AC | Toggling I2C PSEL bit | 50 | μs | |||
tSW(ACUSB) | Switching from AC to USB or USB to AC | AC power removed or USB power removed | 100 | μs | |||
BATTERY REMOVAL DETECTION | |||||||
VNOBATID | Battery ID resistor detection | ID resistor not detected at V(OUT)– V(ANLG1) < VNOBATID | 0.5 | V | |||
tDGL(NOBAT) | Deglitch time for battery removal detection | 0.6 | 1.2 | ms | |||
IO(ANLG1) | ANLG1 pullup current | Set through I2C bits (BATID1,BATID2) ADC_WAIT register | 00, V(OUT): 2.5 V to 4.4 V | μA | |||
01 | 10 | ||||||
10 | 50 | ||||||
11 | 60 | ||||||
Total accuracy | 25% | 25% | |||||
FAST CHARGE CURRENT, V(OUT) > V(BAT) + 0.1 V, V(BAT) > VLOWV | |||||||
IO(BAT) | Charge current range | 100 | 1500 | mA | |||
V(SET) | Battery charge current set voltage | V(SET) = V(ISET1), (ISET1_1, ISET1_0) = |
11, 100% scaling | 2.475 | 2.500 | 2.525 | V |
10, 75% scaling | 1.875 | 1.900 | 1.925 | ||||
01, 50% scaling | 1.225 | 1.250 | 1.275 | ||||
00, 25% scaling | 0.575 | 0.600 | 0.625 | ||||
K(SET) | Battery charge current set factor | 100 mA < IO(BAT) ≤ 1 A | 350 | 400 | 450 | ||
1 mA < IO(BAT) ≤ 100 mA | 100 | 400 | 1000 | ||||
PRECHARGE CURRENT, V(OUT) > V(BAT) + 0.1 V, VBATSH < V(BAT) < VLOWV, t < t(PRECHG) | |||||||
IO(PRECHG) | Precharge current range | 10 | 150 | mA | |||
VPRECHG | Precharge set voltage | VPRECHG = V(ISET1) | 220 | 250 | 270 | mV | |
VLOWV | Precharge to fast-charge transition | Fast charge at V(BAT) > VLOWV | 2.8 | 3 | 3.2 | V | |
tDGL(PRE) | Deglitch time for fast charge to precharge transition | Decreasing battery voltage, RTMR = 50 kΩ | 22.5 | ms | |||
CHARGE REGULATION VOLTAGE, V(OUT) > VO(BATREG) + 0.1 V | |||||||
VO(BATREG) | Battery charge voltage | Voltage options, selection through I2C | 4.2 | V | |||
4.356 | V | ||||||
Accuracy, TA = 25°C | –0.5% | 0.5% | |||||
Total accuracy | –1% | 1% | |||||
CHARGE TERMINATION, V(BAT) > VRCH, VOLTAGE REGULATION MODE SET | |||||||
I(TERM) | Charge termination current range | 10 | 150 | mA | |||
V(TERM) | Battery termination detection set voltage | V(TERM) = V(ISET1), (ISET1_1, SET1_0) = |
11, 100% scaling | 240 | 260 | 280 | mV |
10, 75% scaling | 145 | 160 | 175 | ||||
01, 50% scaling | 90 | 110 | 130 | ||||
00, 25% scaling | 40 | 60 | 75 | ||||
tDGL(TERM) | Deglitch time for termination detection | V(ISET1) < V(TERM), RTMR = 50 kΩ | 22.5 | ms |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
BATTERY RECHARGE DETECTION | |||||||
VRCH | Recharge threshold voltage | New charge cycle starts if V(BAT) < VO(BATREG) – VRCH, after termination was detected | 80 | 100 | 130 | mV | |
tDGL(RCH) | Deglitch time for recharge detection | RTMR = 50 kΩ | 22.5 | ms | |||
DPPM FUNCTION | |||||||
VDPPM | DPPM regulation point range | V(DPPM) = RDPPM × KDPPMM × IO(DPPM) | 2.6 | 4.4 | V | ||
IO(DPPM) | DPPM pin current source | AC or USB Present | 95 | 100 | 105 | μA | |
KDPPM | DPPM scaling factor | 1.139 | 1.15 | 1.162 | |||
tDGL(DPPM) | DPPM de-glitch time | Status bit set indicating DPPM loop active after deglitch time, RTMR = 50 kΩ | 500 | μs | |||
CHARGE AND PRECHARGE SAFETY TIMER | |||||||
tCHG | Charge safety timer programmed value | Safety timer range, thermal and DPPM loop not active, tCHG = RTMR × KTMR |
3 | 5 | 10 | h | |
KTMR | Charge timer set factor | 0.313 | 0.36 | 0.414 | s/Ω | ||
tCHGADD | Total elapsed time when DPPM or thermal loop are active | Fast charge on, tCHGADD is the maximum add-on time added to tCHG | 2 × tCHG | h | |||
tPRECHG | Precharge safety timer programmed value | Pre charge safety timer range, thermal and DPPM loop not active, tPRECHG = KPRE × RTMR × KTMR |
18 | 30 | 60 | min | |
KPRE | Precharge timer set factor | 0.09 | 0.1 | 0.11 | |||
tPCHGADD | Total elapsed time when DPPM or thermal loop are active | Precharge on, tPCHGADD is the maximum add-on time added to tPRECHG |
2 × tPRECHG | h | |||
RTMR | External timer resistor limits | 30 | 100 | kΩ | |||
RTMR(FLT) | Timer fault recovery pullup resistor | Internal resistor connected from OUT to BAT after safety timer timeout | 1 | kΩ | |||
THERMAL REGULATION LOOP | |||||||
TTHREG | Temperature regulation limit | Charge current decreased and timer extended when TJ > TTHREG | 115 | 135 | °C | ||
CHARGER THERMAL SHUTDOWN | |||||||
TTHCHG | Charger thermal shutdown | Charger turned off when TJ > TTHCHG | 150 | °C | |||
THCHGHYS | Charger thermal shutdown hystersis | 30 | °C |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
SELECTABLE OUTPUT VOLTAGE LDOs: LDO1, LDO2 | |||||||
IQ(LDO12) | Quiescent current, either LDO1 or LDO2 enabled, LDO0 disabled | IQ(LDO12) = I(VIN_LDO02) | I(LDO1,2) = –1 mA | 15 | μA | ||
I(LDO1,2) = –150 mA | 160 | ||||||
IO(LDO1,2) | Output current range | 150 | mA | ||||
VO(LDO1,2) | LDO1, LDO2 Output Voltage | Output voltage, selectable through I2C. | Available output voltages: VO(LDO1,2)TYP = 1.25, 1.5, 1.8, 2.5, 2.85, 3, 3.2, 3.3 | V | |||
Dropout voltage, 150-mA load | 300 | mV | |||||
Total accuracy, V(VIN_LDO02) = 3.65 V | –3% | 3% | |||||
Line Regulation, 100-mA load, V(VIN_LDO02): V(LDO1,2)TYP + 0.5 V → 4.7 V |
–1% | 1% | |||||
Load regulation, load: 10 mA → 150 mA V(VIN_LDO02) > VO(LDO1,2) TYP + 0.5 V |
–1.5% | 1.5% | |||||
PSR(LDO12) | PSRR at 20 kHz | 150mA load at output, V(VIN_LDO02) – VO(LDO1,2) = 1 V | 40 | dB | |||
ISC(LDO1,2) | LDO1&2 short circuit current limit | Output grounded | 300 | mA | |||
RDCH(LDO1,2) | Discharge resistor | LDO disabled by I2C command | 300 | Ω | |||
ILKG(LDO1,2) | Leakage current | LDO off | 2 | μA | |||
SIM LINEAR REGULATOR | |||||||
IQ(SIM) | Quiescent current | Internally connected to OUT pin | 20 | μA | |||
IO(SIM) | Output current range | 8 | mA | ||||
VO(SIM) | SIM LDO output voltage | Output voltage, selectable through I2C. | Available output voltages: VO(SIM)TYP = 1.8 or 2.5 |
V | |||
Dropout voltage, 8-mA load | 0.2 | V | |||||
Total accuracy, V(OUT): 3.2 V to 4.7 V, 8 mA | –5% | 5% | |||||
Load regulation, load: 1 mA → 8 mA, V(OUT) > VO(SIM) TYP + 0.5 V | –3% | 3% | |||||
Line regulation, 5-mA load, V(OUT): VO(SIM) TYP + 0.5 V → 4.7 V | –2% | 2% | |||||
ISC(SIM) | Short-circuit current limit | Output grounded | 20 | mA | |||
ILKG(SIM) | Leakage current | LDO off | 1 | μA | |||
PROGRAMMABLE OUTPUT VOLTAGE LDOs: LDO3, LDO4, LDO5 | |||||||
IQ(LDO35) | Quiescent current, only one of LDO3, LDO4, LDO5 is enabled | IQ(LDO35) = I(VIN_LDO35) | 70 | μA | |||
IO(LDO35) | Output current range | 100 | mA | ||||
VO(LDO35) | LDO3, LDO4, LDO5 output voltage | Output voltage, selectable through I2C |
Available output voltages: VO(LDO35)TYP = 1.224 V to 4.46 V, 25-mV steps |
V | |||
Dropout voltage, 100-mA load | 240 | mV | |||||
Total accuracy, 100-mA load V(VIN_LDO35) = 5 V | –3% | 3% | |||||
Load regulation, V(VIN_LDO35) > VO(LDO35)TYP + 0.5 V, load: 1 mA → 50 mA |
–1% | 1% | |||||
Line regulation, 10-mA load, V(VIN_LDO35): VO(LDO35)TYP + 0.5 V → 4.7 V |
–1% | 1% | |||||
ISC(LDO35) | Short-circuit current limit | Output grounded | 250 | mA | |||
PSR(LDO35) | PSRR at 10 kHz | V(VIN_LDO35) > VO(LDO3,5) + 1 V, 50-mA load at output | 40 | dB | |||
RDCH(LDO35) | Discharge resistor | LDO is disabled by I2C command | 400 | Ω | |||
ILKG(LDO35) | Leakage current | LDO off | 1 | μA | |||
RTC_OUT LINEAR REGULATOR | |||||||
IQ(RTC_OUT) | Quiescent current for RTC LDO | Internally connected to OUT pin | 20 | μA | |||
IO(RTC_OUT) | Output current range | 8 | mA | ||||
VO(RTC_OUT) | RTC_OUT output voltage | Fixed output voltage value | 1.5 | V | |||
Dropout voltage, I(RTC_OUT) = –8 mA | 200 | mV | |||||
Total accuracy, V(OUT): 2 V to 4.7 V, 8-mA load, sleep mode not set | –5% | 5% | |||||
Load regulation, load: 1 mA → 8 mA, 2 V < V(OUT) < 4.7 V |
–3% | 3% | |||||
Line regulation, 5-mA load, V(OUT): 2 V → 4.7 V | –2% | 2% | |||||
ISH(RTC_OUT) | Short-circuit current limit | V(RTC_OUT) = 0 V | 20 | mA | |||
ILKG(RTC_OUT) | Leakage current | V(RTC_OUT) = 1.5 V, V(OUT) = 0 V | TJ = 85°C | 880 | nA | ||
TJ = 25°C | 250 | ||||||
LDO0 LINEAR REGULATOR | |||||||
IQ(LDO0) | Quiescent current | Internally connected to VIN_LDO12 pin |
I(LDO0) = –1 mA | 15 | μA | ||
I(LDO0) = –150 mA | 160 | ||||||
IO(LDO0) | Output current range | 150 | mA | ||||
VO(LDO0) | Output voltage | Fixed output voltage value | 3.3 | V | |||
Dropout voltage, I(LDO0) = –150 mA | 300 | mV | |||||
Total accuracy | –3% | 3% | |||||
Line regulation, V(OUT): VO(LDO0) + 0.5 → 4.7 V, I(LDO0) = –100 mA |
–1% | 1% | |||||
Load regulation, I(LDO0) = –10 mA → –150 mA | –1.5% | 1.5% | |||||
PSR(LDO0) | PSRR at 20 kHz | 150-mA load at output, V(VIN_LDO12) – VO(LDO1,2) = 1 V | 40 | dB | |||
ISC(LDO0) | Short circuit current limit | V(LDO0) = 0 V | 300 | mA | |||
ILKG(LDO0) | Leakage current | LDO off | 1 | μA | |||
LDO_PM LINEAR REGULATOR | |||||||
IQ(LD0_PM) | Output current range | 20 | mA | ||||
VO(LDO_PM) | Output voltage | Fixed output voltage value, V(OUT) > 4 V | 3.3 | V | |||
Dropout voltage, I(LDOPM) = –12 mA | 0.5 | 0.7 | |||||
Total accuracy | –5% | 5% | |||||
ILKG(LDOPM) | Leakage current | LDO off | 1 | μA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
IQ(SM1) | Quiescent current for SM1 | IQ(SM1) = I(VIN_ SM1), no output load, not switching | 10 | μA | |||
SM1 OFF, set through I2C | 0.1 | ||||||
IO(SM1) | Output current range | Vin = 4.2 V, Vout = 1.24 V (TPS65810) | 600 | mA | |||
Vin = 4.2 V, Vout = 1.24 V (TPS65811) | 750 | ||||||
VO(SM1) | Output voltage, PWM mode | Output voltage, selectable through I2C, Standby OFF | Available output voltages: VO(SM1)TYP = 0.6 V to 1.8 V, adjustable in 40-mV steps | V | |||
VO(SM1) = VSBY(SM1), Output voltage range, Standby ON | Available output voltages: VSBY(SM1) = 0.6 V to 1.8 V, adjustable in 40-mV steps | ||||||
Total accuracy, VO(SM1)TYP = VSBY(SM1) = 1.24 V, V(VIN_SM1) = 3.0 V to 4.7 V; 0 mA ≤ IO(SM1) ≤ 600 mA |
–3% | 3% | |||||
Line Regulation, V(VIN_SM1): 3.0 → 4.70 V, IO(SM1) = 10 mA |
0.027 | %/V | |||||
Load Regulation, V(VIN_SM1) = 4.7 V, IO(SM1): 60 mA → 540 mA |
0.139 | %/A | |||||
RDSON(PSM1) | P-channel MOSFET ON-resistance | V(VIN_SM1) = 3.6 V, 100% duty cycle set | 310 | 500 | mΩ | ||
ILKG(PSM1) | P-channel leakage current | 0.1 | μA | ||||
RDSON(NSM1) | N-channel MOSFET ON-resistance | V(VIN_SM1) = 3.6 V, 0% duty cycle set | 220 | 330 | mΩ | ||
ILKG(PSM1) | N-channel leakage current | 5 | μA | ||||
ILIM(SM1) | P- and N-channel current limit | 3 V < V(VIN_SM1) < 4.7 V (TPS65810) | 900 | 1050 | 1200 | mA | |
3 V < V(VIN_SM1) < 4.7 V (TPS65811) | 1000 | 1200 | 1400 | ||||
fS(SM1) | Oscillator frequency | PWM mode set | 1.3 | 1.5 | 1.7 | MHz | |
EFF(SM1) | Efficiency | V(VIN_SM1) = 4.2 V, PWM mode, IO(SM1) = 300 mA, VO(SM1) = 3 V |
90% | ||||
tSS(SM1) | Soft-start ramp time | Converter OFF→ON, VO(SM1): 5% → 95% of target value | 750 | μs | |||
tDLY(SM1) | Converter turnon delay | GPIO1 pin programmed as SM1 converter enable control. Measured from V(GPIO1): LO → HI | 170 | μs |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
IQ(SM2) | Quiescent current for SM2 | IQ(SM2) = I(VIN_ SM2), no output load, not switching | 10 | μA | |||
SM2 OFF, set through I2C | 0.1 | ||||||
IO(SM2) | Output current range | Vin = 4.2 V, Vout = 1.24 V (TPS65810) | 600 | mA | |||
Vin = 4.2 V, Vout = 1.24 V (TPS65811) | 750 | ||||||
VO(SM2) | Output voltage | Output voltage, selectable through I2C, stand-by OFF | Available output voltages: VO(SM2)TYP = 1 V to 3.4 V, adjustable in 80-mV steps | V | |||
VO(SM2) = VSBY(SM2), Output voltage range, stand-by ON | Available output voltages: VSBY(SM2) = 1 V to 3.4 V, adjustable in 80-mV steps | ||||||
Total accuracy, VO(SM2)TYP = VSM2(SBY) = 1.8 V, V(VIN_SM2) = greater of [3.0 V or (VO(SM2) + 0.3 V)] to 4.7 V; 0 mA ≤ IO(SM2) ≤ 600 mA |
–3% | 3% | |||||
Line regulation, V(VIN_SM2) = greater of [3 V or (VO(SM2) + 0.3 V)] to 4.7 V; 0 mA ≤ IO(SM2) ≤ 600 mA |
0.027 | %/V | |||||
Load regulation, V(VIN_SM2) = 4.7 V, IO(SM2): 60 mA → 540 mA |
0.139 | %/A | |||||
RDSON(PSM2) | P-channel MOSFET ON-resistance | V(VIN_SM2) = 3.6 V, 100% duty cycle set | 310 | 500 | mΩ | ||
ILKG(PSM2) | P-channel leakage current | 0.1 | μA | ||||
RDSON(NSM2) | N-channel MOSFET ON-resistance | V(VIN_SM2) = 3.6 V, 0% duty cycle set | 220 | 330 | mΩ | ||
ILKG(PSM2) | N-channel leakage current | 5 | μA | ||||
ILIM(SM2) | P- and N-channel current limit | 3 V < V(VIN_SM2) < 4.7 V (TPS65810) | 900 | 1050 | 1200 | mA | |
3 V < V(VIN_SM2) < 4.7 V (TPS65811) | 1000 | 1200 | 1400 | ||||
fS(SM2) | Oscillator frequency | PWM mode set | 1.3 | 1.5 | 1.7 | MHz | |
EFF(SM2) | Efficiency | V(VIN_SM2) = 4.2 V, IO(SM2) = 300 mA, VO(SM2) = 3 V |
90% | ||||
tSS(SM2) | Soft-start ramp time | Converter OFF→ON, VO(SM2) : 5% → 95% of target value | 750 | μs | |||
tDLY(SM2) | Converter turnon delay | GPIO2 pin programmed as SM2 converter enable control. Measured from V(GPIO2): LO → HI | 170 | μs |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
GPIO1–3 | ||||||
VOL | Low level output voltage GPIO0 | IOL = 20 mA | 0.5 | V | ||
IOGPIO | Low level sink current into GPIO1,2,3 | V(GPIOn) = V(OUT) | 20 | mA | ||
VIL | Low level input voltage | 0.4 | V | |||
ILKG(GPIO) | Input leakage current | V(GPIOn) = V(OUT) | 1 | μA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
ANALOG INPUTS | |||||||
VRNG(CH1_5) | Full scale input range Ch1 to Ch5 | Positive inputs (active clamp) Full scale ~ 2.535 V |
0 | V(ADC_REF) | V | ||
VRNG(CH6_8) | Full scale input range Ch6 to Ch8 | Positive inputs (active clamp), full scale ~4.7 V | 0 | VINTREF ×1.854 | V | ||
CIN(ADC) | Input capacitance (all channels) | 15 | pF | ||||
RINADC(CH1_5) | Input resistance | (Ch1 to Ch5) | 1 | MΩ | |||
ILKGADC(CH1_5) | Leakage current | (Ch1 to Ch5) | 100 | nA | |||
RINADC(CH6_8) | Input resistance | (Ch6 to Ch8) | 430 | 540 | kΩ | ||
ILKGADC(CH6_8) | Leakage current | (Ch6 to Ch8) | 10 | μA | |||
VCH5(ADC) | Internal voltage proportional to junction temperature | TJ = 25°C, ADC channel 5 input voltage | 1.895 | V | |||
Temperature coefficient | 6.5 | mV/ °C | |||||
DC ACCURACY | |||||||
RES(ADC) | Resolution | SAR ADC | 10 | Bits | |||
MCD(ADC) | No missing codes | SPECIFIED | |||||
INL(ADC) | Integral linearity error | ±3 | LSB | ||||
DNL(ADC) | Differential non-linearity error | ±1 | LSB | ||||
OFFZERO(ADC) | Offset error | Difference between the first code transition (00...00 to 00...01) and the ideal AGND + 1 LSB | 5 | LSB | |||
OFFCH(ADC) | Offset error match between channels | 5 | LSB | ||||
GAINADC | Gain error | Deviation in code from the ideal full scale code (11…111) for the full scale voltage | ±8 | LSB | |||
GAINCH(ADC) | Gain error match | Any two channels | 2 | LSB | |||
THROUGHPUT SPEED | |||||||
ADCCLK | Sampling clock | 600 | 750 | 900 | kHz | ||
ADCTCONV | Conversion time | Sampling, conversion and setting Rs ≤ 200 K for CH1,CH2,CH3; Rs ≤ 500 Ω for CH6, CH7, CH8 | 44 | 59 | 68 | μs | |
REFERENCE VOLTAGES | |||||||
VINTREF | Internal ADC reference voltage | TA = 25°C, V(ADC_REF)=VINTREF when internal ADC reference is selected | 2.53 | 2.535 | 2.54 | V | |
ISHRT(INTREF) | Internal reference short circuit limit | V(ADC_REF)= AGND1, internal reference enabled through I2C | 6 | mA | |||
VREF(DRIFT) | ADC internal reference temperature drift | 50 | 100 | ppm/°C | |||
IQ(ADC) | ADC Internal reference quiescent current | Measured at OUT pin (internal reference) or ADC_REF pin (external reference) | 40 | μA | |||
I(ANLG2) | ANLG2 pin internal pullup current source | ADC channel 2 bias current, set through I2C register ADC_WAIT bits (ADC_CH2I_D1_1, ADC_CH2I _D2) | 00 | 0 | μA | ||
01 | 10 | ||||||
10 | 50 | ||||||
11 | 60 | ||||||
Total accuracy, relative to selected value | –25% | 25% | |||||
I(ANLG1) | ANLG1 pin internal pullup current source | ADC channel 1 bias current, set through I2C register ADC_WAIT bits (BATIDI_D1, BATIDI _D2) | 00 | μA | |||
01 | 10 | ||||||
10 | 50 | ||||||
11 | 60 | ||||||
Total accuracy | 10% | 10% | |||||
INTERNAL REFERENCE POWER CONSUMPTION | |||||||
PDACTIVE | Power dissipation | Conversion active | 2.3 | mW | |||
PDARMED | Power dissipation | Not converting | 0.43 | mW |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
SM3 BOOST CONVERTER, WHITE LED CONSTANT CURRENT DRIVER | |||||||
VVIN(SM3) | Input voltage range | V(OUT) = 3.3 V | 3 | 4.7 | V | ||
VOVP3 | Output overvoltage trip | OVP detected at V(SM3) > VOVP3 | 26.5 | 29 | 30 | V | |
VHYS(OVP3) | Output overvoltage hysteresis | OVP not detected at V(SM3) < VOVP3 – VHYS(OVP3) | 1.8 | V | |||
VSM3REF | LED current-sense threshold | LED current below regulation point at V(FB3) < VSM3REF |
244 | 252 | 260 | mV | |
IO(SM3) | LED current | Current range, Vin = 3.3 V, | 0 | 25 | mA | ||
Total accuracy, IO(SM3) = 10 mA | –10% | 10% | |||||
DSM3SW | LED-switch duty cycle | Duty cycle range | DSM3SW = 0% to 99.6%, set through I2C, 256 steps, 0.4% minimum step |
||||
FREP_SM3 | LED-switch duty cycle pattern repetition rate | 256 pulses within repetition rate time | SM3_LF_OSC = 0 | 122 | Hz | ||
SM3_LF_OSC = 1 | 183 | ||||||
RDSON(SM3SW) | LED switch MOSFET ON-resistance | V(OUT) = 3.6 V; I(SM3SW) = 20 mA | 1 | 2 | Ω | ||
ILKG(SM3SW) | LED switch MOSFET leakage | 1 | μA | ||||
RDSON(L3) | Power stage MOSFET ON-resistance | V(OUT) = 3.6 V; I(L3) = 200 mA | 300 | 600 | mΩ | ||
ILKG(L3) | Power stage MOSFET leakage | 1 | μA | ||||
IMAX(L3) | Power stage MOSFET current limit | 3 V < V(OUT) < 4.7 V | 400 | 500 | 600 | mA | |
PWM DRIVER, PWM OPEN-DRAIN OUTPUT | |||||||
VOL(PWM) | Low level output voltage | I(PWM) = 150 mA | 0.5 | V | |||
FPWM | PWM driver frequency | Frequency range | Set through I2C, FPWM = 0.5 / 1 / 1.5 / 2 / 3 / 4.5 / 7.8 / 15.6 | Hz | |||
Total accuracy, relative to selected value | –20% | 20% | |||||
DPWM | PWM driver duty cycle | Duty cycle range | DPWM = 6.25% to 100%, set through I2C, 6.25% minimum step |
||||
LED_PWM DRIVER, LED_PWM OPEN-DRAIN OUTPUT | |||||||
DLEDPWM | LED_PWM driver duty cycle | Duty cycle range | DLEDPWM = 0% to 99.6%, set through I2C, 256 steps 0.4% minimum step |
||||
FREP(LEDPWM) | LED_PWM driver duty cycle pattern repetition rate | 256 pulses within repetition rate time | SM3_LF_OSC = 0 | 122 | Hz | ||
SM3_LF_OSC = 1 | 180 | ||||||
VOL(LEDPWM) | Low level output voltage | I(LED_PWM) = 150 mA | 0.5 | V | |||
VOH(LEDPWM) | High level output voltage | 6 | V | ||||
RGB DRIVER, RED, GREEN, AND BLUE OPEN-DRAIN OUTPUT | |||||||
tFLASH(RGB) | Flashing period | Flashing period range | tFLASH(RGB) = 1 to 8 sec, set through I2C, 0.5 s minimum step, 8 steps | s | |||
Total accuracy | –20% | 20% | |||||
tFLASH(ON) | Flash on time | Flash on time range, value selectable by I2C | Set through I2C, tFLASH(ON) = 0.1 / 0.15 / 0.2 / 0.25 / 0.3 / 0.4 / 0.5 / 0.6 | s | |||
Total accuracy relative to selected value | –20% | 20% | |||||
DRGB | Duty cycle | Duty cycle range, value selectable through I2C | DRGB = 0% to 99.98%, set through I2C, 3.23% minimum step | ||||
ISINK(RGB) | RGB output sink current | V(RED) = V(GREEN) = V(BLUE) = 2 V, set through I2C RGB_ISET1,0 | 00 = (Driver set to OFF) | mA | |||
01 | 2.4 | 4 | 5.6 | ||||
10 | 4.8 | 8 | 11.2 | ||||
11 | 7 | 12 | 16.6 | ||||
VOL(RGB) | Low-level output voltage | Output low voltage, 8-mA load, RED/GREEN/BLUE PINS | 0.3 | V | |||
ILKG(RGB) | Output off leakage current | V(RED) = V(GREEN) = V(BLUE) = 4.7 V, all drivers disabled | 1 | μA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
I2C INTERFACE LOGIC LEVELS | ||||||
VIH | High level input voltage | 1.3 | 6 | V | ||
VIL | Low level input voltage | 0 | 0.6 | V | ||
IH | Input bias current | 0.01 | μA |
MIN | MAX | UNIT | ||
---|---|---|---|---|
I2C TIMING CHARACTERISTICS | ||||
tR | SCLK/SDATA rise time | 300 | ns | |
tF | SCLK/SDATA fall time | 300 | ns | |
tW(H) | SCLK pulse width, high | 600 | ns | |
tW(L) | SCLK pulse width, low | 1.3 | μs | |
tSU(STA) | Setup time for START condition | 600 | ns | |
tH(STA) | START condition hold time after which first clock pulse is generated | 600 | ns | |
tSU(DAT) | Data setup time | 100 | ns | |
tH(DAT) | Data hold time | 0 | ns | |
tSU(STOP) | Setup time for STOP condition | 600 | ns | |
t(BUF) | Bus free time between START and STOP condition | 1.3 | μs | |
FSCL | Clock Frequency | 400 | kHz |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
tDELAY(TRG) | Trigger delay time accuracy | Time range, set through I2C register ADC_DELAY | 0 | 750 | µs | |
Relative to typical value set through I2C | –20% | 20% | ||||
tWAIT(TRG) | Trigger wait time accuracy | Time range, set through I2C register ADC_WAIT | 0 | 20.48 | ms | |
Relative to typical value set through I2C | –20% | 20% |
PACKAGE | θJA | TA ≤ 55°C POWER RATING |
DERATING FACTOR ABOVE TA = 55°C |
---|---|---|---|
RTQ (1) (2) | 21.7°C/W | 3.22 W | 0.046 W/°C |