SLVS658C March   2006  – January 2016 TPS65811

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics - System Sequencing and Operating Modes
    6. 7.6  Electrical Characteristics - Power Path and Charge Management
    7. 7.7  Electrical Characteristics - Power Path and Charge Management (Continued)
    8. 7.8  Electrical Characteristics - Power Path and Charge Management (Continued)
    9. 7.9  Electrical Characteristics - Linear Regulators
    10. 7.10 Electrical Characteristics - Switched-Mode SM1 Step-Down Converter
    11. 7.11 Electrical Characteristics - Switched-Mode SM2 Step-Down Converter
    12. 7.12 Electrical Characteristics - GPIOs
    13. 7.13 Electrical Characteristics - ADC
    14. 7.14 Electrical Characteristics - LED and PWM Drivers
    15. 7.15 Electrical Characteristics - I2C Interface
    16. 7.16 Timing Requirements - I2C Interface
    17. 7.17 Trigger Timing Characteristics
    18. 7.18 Dissipation Ratings
    19. 7.19 Typical Characteristics
      1. 7.19.1 Power Path Management
      2. 7.19.2 Linear Regulators 0, 1, 2
      3. 7.19.3 Linear Regulators 3, 4, 5
      4. 7.19.4 SM1 and SM2 Buck Converters
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Interrupt Controller and System Sequencing
        1. 8.3.1.1 Overview
        2. 8.3.1.2 Interrupt Controller
        3. 8.3.1.3 System Sequencing and TPS65810 Operating Modes
          1. 8.3.1.3.1 Power Up
          2. 8.3.1.3.2 Enable
          3. 8.3.1.3.3 Sequencing
          4. 8.3.1.3.4 Reset
          5. 8.3.1.3.5 Power-Good Check
          6. 8.3.1.3.6 Sleep Mode
          7. 8.3.1.3.7 Normal Mode
          8. 8.3.1.3.8 Processor Standby State
        4. 8.3.1.4 TPS65810 Operating Mode Controls
        5. 8.3.1.5 Functionality Reference Guide - Host Interface and System Sequencing
      2. 8.3.2 Power Path and Charge Management
        1. 8.3.2.1 Overview
        2. 8.3.2.2 Power Path Management Function
          1. 8.3.2.2.1  Detecting the System Status
          2. 8.3.2.2.2  Power Path Logic: Priority Algorithm
          3. 8.3.2.2.3  Input Current Limit
          4. 8.3.2.2.4  System Voltage Regulation
          5. 8.3.2.2.5  Input Overvoltage Detection
          6. 8.3.2.2.6  Output Short-Circuit Detection
          7. 8.3.2.2.7  Battery Short-Circuit Detection
          8. 8.3.2.2.8  Initial Power Path Operation
          9. 8.3.2.2.9  No-Battery Detection Circuit
          10. 8.3.2.2.10 Using the Input Power to Run the System and Charge the Battery Pack
        3. 8.3.2.3 Battery Charge Management Function
          1. 8.3.2.3.1  Operating Modes
          2. 8.3.2.3.2  Battery Preconditioning
          3. 8.3.2.3.3  Constant Current Charging
          4. 8.3.2.3.4  Charge Termination and Recharge
          5. 8.3.2.3.5  Battery Voltage Regulation, Charge Voltage
          6. 8.3.2.3.6  Temperature Qualification
          7. 8.3.2.3.7  Dynamic Power Path Management
          8. 8.3.2.3.8  Charger Off Mode
          9. 8.3.2.3.9  Precharge Safety Timer
          10. 8.3.2.3.10 Charge Safety Timer
          11. 8.3.2.3.11 Timer Fault Recovery
          12. 8.3.2.3.12 Dynamic Timer Function
        4. 8.3.2.4 Functionality Guide — System Power and Charge Management
      3. 8.3.3 Linear Regulators
        1. 8.3.3.1 Simplified Block Diagram
        2. 8.3.3.2 Connecting the LDO Input Supply
        3. 8.3.3.3 ON/OFF Control
        4. 8.3.3.4 Output Discharge Switch
        5. 8.3.3.5 Special Functions
        6. 8.3.3.6 Output Voltage Monitoring
        7. 8.3.3.7 Functionality Guide — Linear Regulators
      4. 8.3.4 Step-Down Switched-Mode Converters: SM1 and SM2
        1. 8.3.4.1 Output Voltage Slew Rate
        2. 8.3.4.2 Soft-Start
        3. 8.3.4.3 Dropout Operation at 100% Duty Cycle
        4. 8.3.4.4 Output Voltage Monitoring
        5. 8.3.4.5 Stand-by Mode
        6. 8.3.4.6 PWM Operation
        7. 8.3.4.7 Phase Control in PWM Mode
        8. 8.3.4.8 PFM Mode Operation
        9. 8.3.4.9 Functionality Guide — Switched-Mode Step-Down Converters
      5. 8.3.5 Analog-to-Digital Converter
        1. 8.3.5.1 Overview
        2. 8.3.5.2 Input Channels
        3. 8.3.5.3 Functional Overview
          1. 8.3.5.3.1 ADC Conversion Cycle
          2. 8.3.5.3.2 External Trigger Operation
          3. 8.3.5.3.3 Detecting an External Trigger Event
          4. 8.3.5.3.4 Executing Multiple-Sample Cycles With an External Trigger
          5. 8.3.5.3.5 Continuous Conversion Operation (Repeat Mode)
          6. 8.3.5.3.6 ADC Input Signal Range Setting
          7. 8.3.5.3.7 ADC State Machine
        4. 8.3.5.4 Battery Detection Circuit
        5. 8.3.5.5 Functionality Guide - Analog to Digital Converter
      6. 8.3.6 LED and Peripheral Drivers
        1. 8.3.6.1 White LED Constant Current Driver
          1. 8.3.6.1.1 SM3 Control Logic Overview
          2. 8.3.6.1.2 Peak Current Control (Boost Converter)
          3. 8.3.6.1.3 Soft-Start
          4. 8.3.6.1.4 Enabling the SM3 Converter
          5. 8.3.6.1.5 Overvoltage Protection
          6. 8.3.6.1.6 Under Voltage Lockout Operation
          7. 8.3.6.1.7 Thermal Shutdown Operation
        2. 8.3.6.2 PWM Drivers
          1. 8.3.6.2.1 PWM Pin Driver
          2. 8.3.6.2.2 LED_PWM Pin Driver
          3. 8.3.6.2.3 RGB Driver
        3. 8.3.6.3 Functionality Guide — LED And Peripheral Drivers
      7. 8.3.7 General-Purpose I/Os — GPIO 1, 2, 3
        1. 8.3.7.1 GPIOs Input Level Configuration
        2. 8.3.7.2 Function Implementation: I2C Commands Versus GPIO Commands
          1. 8.3.7.2.1 GPIO Configuration Table
        3. 8.3.7.3 Functionality Guide - General-Purpose Inputs and Outputs
    4. 8.4 Device Functional Modes
      1. 8.4.1 Sleep Mode
      2. 8.4.2 Normal Mode
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1  Overview
        2. 8.5.1.2  Register Default Values
        3. 8.5.1.3  I2C Address
        4. 8.5.1.4  Incremental Read
        5. 8.5.1.5  I2C Bus Release
        6. 8.5.1.6  Sleep Mode Operation
        7. 8.5.1.7  I2C Communication Protocol
        8. 8.5.1.8  I2C Read and Write Operations
        9. 8.5.1.9  Valid Write Sequences
        10. 8.5.1.10 One-Byte Write
        11. 8.5.1.11 Valid Read Sequences
        12. 8.5.1.12 Non-Valid Sequences
    6. 8.6 Register Maps
      1. 8.6.1 Sequencing and Operating Modes - I2C Registers
      2. 8.6.2 System Status — I2C Registers
      3. 8.6.3 Interrupt Controller - I2C Registers
      4. 8.6.4 Charge and System Power Management — I2C Registers
      5. 8.6.5 Linear Regulators — I2C Registers
      6. 8.6.6 Switched-Mode Step-Down Converters — I2C Registers
      7. 8.6.7 ADC - I2C Registers
      8. 8.6.8 White LED, PWM Drivers — I2C Registers
      9. 8.6.9 GPIOs — I2C Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 SM1, SM2 Converter Design Example
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Inductor and Capacitor Selection — Converters SM1 and SM2
          2. 9.2.1.2.2 Output Capacitor Selection, SM1, SM2 Converters
          3. 9.2.1.2.3 Input Capacitor Selection, SM1, SM2 Converters
          4. 9.2.1.2.4 Output Voltage Selection, SM1, SM2 Converters
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Charger Design Example
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Program the Fast Charge Current Level:
          2. 9.2.2.2.2 Program the DPPM_OUT Voltage Level
          3. 9.2.2.2.3 Program the BAT Short Circuit Delay
          4. 9.2.2.2.4 Program the 5-Hour Safety Timer
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
AC and USB with respect to AGND1 –0.3 18 V
ANLG1, ANLG2 with respect to AGND2 –0.3 V(OUT) V
V(OUT) with respect to AGND1 5 V
VIN_LDO12, VIN_LDO35, LDO3, LDO4, LDO5 with respect to AGND2 –0.3 V(OUT) V
LDO35_REF, ADC_REF with respect to AGND2 –0.3 Smaller of: 3.6 or V(OUT) V
SIM, RTC_OUT with respect to AGND1 –0.3 Smaller of: 3.6 or V(OUT) V
SM1, L1, VIN_SM1 with respect to PGND1 –0.3 V(OUT) V
SM2, L2, VIN_SM2 with respect to PGND2 –0.3 V(OUT) V
SM3, L3 with respect to PGND3 –0.3 29 V
SM3SW with respect to PGND3 –0.3 V(OUT) V
FB3 with respect to PGND3 –0.3 0.5 V
All other pins (except AGND and PGND), with respect to AGND1 –0.3 V(OUT) V
AGND2, AGND0, PGND1, PGND2, PGND3 with respect to AGND1 –0.3 0.3 V
Input Current, AC pin 2750 mA
Input Current, USB pin 600 mA
Output continuous current, OUT pin 3000 mA
Output continuous current, BAT pin –3000 mA
Continuous Current at L1, PGND1, L2, PGND2 1800 mA
TA Operating free-air temperature –40 85 °C
TJ Maximum junction temperature 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 1500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
AC and USB with respect to AGND1 4.35 16.5(1) V
ANLG1,ANLG2 with respect to AGND2 0 2.6 V
VIN_LDO35 with respect to AGND2 See (2) 4.7 V
VIN_LDO12 with respect to AGND1 See (2) 4.7 V
VIN_SM1 with respect to PGND1 See (2) 4.7 V
VIN_SM2 with respect to PGND2 See (2) 4.7 V
SM3 with respect to PGND3 28 V
TA Operating free-air temperature –40 85 °C
TJ(op) Junction temperature, functional operation ensured –40 125 °C
TJ Junction temperature, electrical characteristics ensured 0 125 °C
(1) Thermal operating restrictions are reduced or avoided if input voltage does not exceed 5 V.
(2) Greater of: 3.6 V OR minimum input voltage required for LDO/converter operation outside dropout region.

7.4 Thermal Information

THERMAL METRIC(1) TPS6581x UNIT
RTQ (QFN)
56 PINS
RθJA Junction-to-ambient thermal resistance 26.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 10.9 °C/W
RθJB Junction-to-board thermal resistance 4.9 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 4.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics – System Sequencing and Operating Modes

over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
QUIESCENT CURRENT
IBAT(SLEEP) BAT pin current, sleep mode set Input power not detected, V(BAT) = 4.2 V, Sleep mode set 400 μA
IBAT(DONE) BAT pin current, charge terminated Charger function enabled by I2C, termination detected,
input power detected and selected
3 μA
IBAT(CHGOFF) BAT pin current, charge function OFF Charger function disabled by I2C, termination not detected, input power detected and selected 3 μA
IINP(CHGOFF) AC or USB pin current, charge function OFF Charger function disabled by I2C, termination not detected, input power detected and selected. All integrated supplies and drivers OFF, no load at OUT pin. 200 μA
UNDERVOLTAGE LOCKOUT
VUVLO Internal UVLO detection threshold NO POWER mode set at V(OUT) < VUVLO, V(OUT) decreasing –3% 2.5 3% V
VUVLO_HYS UVLO detection hysteresis V(OUT) increasing 120 mV
tDGL(UVLO) UVLO detection deglitch time Falling voltage only 5 ms
SYSTEM LOW VOLTAGE THRESHOLD
VLOW_SYS Minimum system voltage detection threshold System voltage V(SYS_IN) decreasing, SLEEP mode set if
V(SYS_IN) < VLOW_SYS
0.97 1 1.03 V
VHYS(LOWSYS) Minimum system voltage detection hysteresis V(SYS_IN) increasing 50 mV
tDGL(LOWSYS) Minimum system voltage detection deglitch time V(SYS_IN) decreasing 5 ms
THERMAL FAULT
TSHUT Thermal shutdown Increasing junction temperature 165 °C
THYS(SHUT) Thermal shutdown hysteresis Decreasing junction temperature 30 °C
INTEGRATED SUPPLY POWER FAULT DETECTION
VPGOOD Power-good fault detection threshold Falling output voltage, applies to all integrated supply outputs. Referenced to the programmed output voltage value 84% 90% 96%
VHYS(PGOOD) Power-good fault detection hysteresis Rising output voltage, applies to all integrated supply outputs. Referenced to VPGOOD threshold 3% 5% 7%
HOT RESET FUNCTION
VHRSTON Low level input voltage RESET mode set at V(HOT_RESET) < VHRSTON 0.4 V
VHRSTOFF High level input voltage HOT reset not active at V(HOT_RESET) > VHRSTOFF 1.3 V
tDGL(HOTRST) Hot reset input deglitch 5 ms
SYSTEM RESET – OPEN-DRAIN OUTPUT RESPWRON
VRSTLO Low level output voltage IIL = 10 mA, V(RESPWRON ) < VRSTLO 0 0.3 V
ITRSTPWON Pullup current source Internally connected to TRSTPWRON pin 0.9 1 1.2 μA
KRESET Reset timer constant TRESET = KRESET × CTRSTPWON 1 ms/nF

7.6 Electrical Characteristics – Power Path and Charge Management

over recommended operating conditions (typical values at TJ = 25°C), circuit as in Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOLTAGE DETECTION THRESHOLDS
VIN(DT) Input Voltage detection threshold AC detected at V(AC)– V(BAT) > VIN(DT)
USB detected at V(USB)– V(BAT) > VIN(DT)
190 mV
VIN(NDT) Input Voltage removal threshold AC not detected at V(AC)– V(BAT) < VIN(NDT)
USB not detected at V(USB)– V(BAT) < VIN(NDT)
125 mV
tDGL(NDT) Power not detected deglitch 22.5 ms
VSUP(DT) Supplement detection threshold Battery switch ON at V(BAT) – V(OUT) > VSUP(DT) 60 mV
VSUP(NDT) Supplement not detected threshold Battery switch OFF at V(BAT)– V(OUT) < VSUP(NDT) 20 mV
POWER PATH INTEGRATED MOSFETS CHARACTERISTICS
VACDO AC switch dropout voltage VACDO = V(AC)– V(OUT); V(AC) = 4.75 V AC input current limit set to
2.75 A (typical), IO(OUT) = 1 A
350 375 mV
VUSBDO USB switch dropout voltage VUSBDO = V(USB)– V(OUT); V(USB) = 4.6 V USB input current limit set to 2.75 A (typical) I(OUT)+ I(BAT)= 0.5 A 175 190 mV
I(OUT)+ I(BAT)= 0.1 A 35 45 mV
VBATDODCH Battery switch dropout voltage, discharge V(BAT): 3 V → VCH(REG), I(BAT) = –1 A 60 100 mV
VBATDOCH Battery switch dropout voltage, charge Charger on, V(BAT): 3 V → 4.2 V, I(BAT) = 1 A 60 100 mV
POWER PATH INPUT CURRENT LIMIT
IINP(LIM1) Selected input current limit, applies to USB input only Selected input switch not in dropout, I2C settings: ISET2 = LO, PSEL = LO 80 100 mA
IINP(LIM2) Selected Input current limit, applies to USB input only Selected input switch not in dropout, I2C settings: ISET2 = HI, PSEL = LO 400 500 mA
IINP(LIM3) Selected Input current limit, applies to either AC or USB input Selected input switch not in dropout, I2C settings: ISET2 = HI OR LO,
PSEL = HI
2.75 A
SYSTEM REGULATION VOLTAGE
VSYS(REG) Output regulation voltage VSYS(REG) = V(OUT), DPPM loop not active, selected input current limit not reached. Selected input voltage (AC or USB) > 5.1 V 4.6 4.7 V
POWER PATH PROTECTION AND RECOVERY FUNCTIONS
VINOUTSH Input-to-output short-circuit detection threshold AC and USB switches set to OFF if V(OUT) < VINOUTSH 0.6 V
RSH(USBSH) OUT short circuit recovery pullup resistor V(OUT) < 1 V, internal resistor connected from USB to OUT 500 Ω
RSH(ACSH) OUT short circuit recovery pullup resistor V(OUT) < 1 V, internal resistor connected from AC to OUT 500 Ω
VOVP Overvoltage detection threshold Rising voltage, overvoltage detected when V(AC) > VOVP or
V(USB) > VOVP
6 6.5 6.8 V
Overvoltage detection hysteresis Falling voltage, relative to detection threshold 0.1 V
VBATOUTSH Battery-to-output short-circuit detection threshold BAT switch set to OFF if V(BAT) – V(OUT) > VBATOUTSH 200 mV
KBLK(SHBAT) Battery-to-output short-circuit blanking time constant V(DPPM) < 1v, tBLK(SHBAT) = KBLK(SHBAT) X CDPPM, CDPPM capacitor is connected from DPPM pin to AGND1 1 mS/nF
ISH(BAT) OUT short circuit recovery pullup current source V(BAT) – V(OUT) > VBATOUTSH, Internal current source connected between OUT and BAT 10 mA
RSH(BAT) BAT short circuit recovery resistor V(BAT)< 1 V, Internal resistor connected from OUT to BAT 1
RDCH(BAT) BAT pulldown resistor Internal resistor connected from BAT to AGND1 when battery is not detected by ANLG1 500 Ω

7.7 Electrical Characteristics – Power Path and Charge Management (Continued)

over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER PATH TIMING CHARACTERISTICS, DPPM, AND THERMAL LOOPS NOT ACTIVE, RTMR = 50 kΩ
tBOOT Boot-up time Measured from input power detection 120 200 300 ms
tSW(ACBAT) Switching from AC to BAT No USB: measured from V(AC) – V(BAT) < VIN(NDT),
USB detected: CE = LO (after CE hold-off time)
50 μs
tSW(USBBAT) Switching from USB to BAT No AC: measured from V(USB) – V(BAT) < VIN(NDT),
USB detected: CE = LO (after CE hold-off time)
50 μs
tSW(PSEL) Switching from USB to AC Toggling I2C PSEL bit 50 μs
tSW(ACUSB) Switching from AC to USB or USB to AC AC power removed or USB power removed 100 μs
BATTERY REMOVAL DETECTION
VNOBATID Battery ID resistor detection ID resistor not detected at V(OUT)– V(ANLG1) < VNOBATID 0.5 V
tDGL(NOBAT) Deglitch time for battery removal detection 0.6 1.2 ms
IO(ANLG1) ANLG1 pullup current Set through I2C bits (BATID1,BATID2) ADC_WAIT register 00, V(OUT): 2.5 V to 4.4 V TPS65810 TPS65811 tcell_vout_lvs606.gif μA
01 10
10 50
11 60
Total accuracy 25% 25%
FAST CHARGE CURRENT, V(OUT) > V(BAT) + 0.1 V, V(BAT) > VLOWV
IO(BAT) Charge current range TPS65810 TPS65811 tccel_iobat_lvs606.gif 100 1500 mA
V(SET) Battery charge current set voltage V(SET) = V(ISET1),
(ISET1_1, ISET1_0) =
11, 100% scaling 2.475 2.500 2.525 V
10, 75% scaling 1.875 1.900 1.925
01, 50% scaling 1.225 1.250 1.275
00, 25% scaling 0.575 0.600 0.625
K(SET) Battery charge current set factor 100 mA < IO(BAT) ≤ 1 A 350 400 450
1 mA < IO(BAT) ≤ 100 mA 100 400 1000
PRECHARGE CURRENT, V(OUT) > V(BAT) + 0.1 V, VBATSH < V(BAT) < VLOWV, t < t(PRECHG)
IO(PRECHG) Precharge current range TPS65810 TPS65811 tc2_iopre_lvs606.gif 10 150 mA
VPRECHG Precharge set voltage VPRECHG = V(ISET1) 220 250 270 mV
VLOWV Precharge to fast-charge transition Fast charge at V(BAT) > VLOWV 2.8 3 3.2 V
tDGL(PRE) Deglitch time for fast charge to precharge transition Decreasing battery voltage, RTMR = 50 kΩ 22.5 ms
CHARGE REGULATION VOLTAGE, V(OUT) > VO(BATREG) + 0.1 V
VO(BATREG) Battery charge voltage Voltage options, selection through I2C 4.2 V
4.356 V
Accuracy, TA = 25°C –0.5% 0.5%
Total accuracy –1% 1%
CHARGE TERMINATION, V(BAT) > VRCH, VOLTAGE REGULATION MODE SET
I(TERM) Charge termination current range TPS65810 TPS65811 tc3_iterm_lvs606.gif 10 150 mA
V(TERM) Battery termination detection set voltage V(TERM) = V(ISET1),
(ISET1_1, SET1_0) =
11, 100% scaling 240 260 280 mV
10, 75% scaling 145 160 175
01, 50% scaling 90 110 130
00, 25% scaling 40 60 75
tDGL(TERM) Deglitch time for termination detection V(ISET1) < V(TERM), RTMR = 50 kΩ 22.5 ms

7.8 Electrical Characteristics – Power Path and Charge Management (Continued)

over recommended operating conditions (typical values at TJ = 25°C), circuit as in Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
BATTERY RECHARGE DETECTION
VRCH Recharge threshold voltage New charge cycle starts if V(BAT) < VO(BATREG) – VRCH, after termination was detected 80 100 130 mV
tDGL(RCH) Deglitch time for recharge detection RTMR = 50 kΩ 22.5 ms
DPPM FUNCTION
VDPPM DPPM regulation point range V(DPPM) = RDPPM × KDPPMM × IO(DPPM) 2.6 4.4 V
IO(DPPM) DPPM pin current source AC or USB Present 95 100 105 μA
KDPPM DPPM scaling factor 1.139 1.15 1.162
tDGL(DPPM) DPPM de-glitch time Status bit set indicating DPPM loop active after deglitch time, RTMR = 50 kΩ 500 μs
CHARGE AND PRECHARGE SAFETY TIMER
tCHG Charge safety timer programmed value Safety timer range, thermal and DPPM loop not active,
tCHG = RTMR × KTMR
3 5 10 h
KTMR Charge timer set factor 0.313 0.36 0.414 s/Ω
tCHGADD Total elapsed time when DPPM or thermal loop are active Fast charge on, tCHGADD is the maximum add-on time added to tCHG 2 × tCHG h
tPRECHG Precharge safety timer programmed value Pre charge safety timer range, thermal and DPPM loop not active,
tPRECHG = KPRE × RTMR × KTMR
18 30 60 min
KPRE Precharge timer set factor 0.09 0.1 0.11
tPCHGADD Total elapsed time when DPPM or thermal loop are active Precharge on, tPCHGADD is the maximum add-on time
added to tPRECHG
2 × tPRECHG h
RTMR External timer resistor limits 30 100
RTMR(FLT) Timer fault recovery pullup resistor Internal resistor connected from OUT to BAT after safety timer timeout 1
THERMAL REGULATION LOOP
TTHREG Temperature regulation limit Charge current decreased and timer extended when TJ > TTHREG 115 135 °C
CHARGER THERMAL SHUTDOWN
TTHCHG Charger thermal shutdown Charger turned off when TJ > TTHCHG 150 °C
THCHGHYS Charger thermal shutdown hystersis 30 °C

7.9 Electrical Characteristics – Linear Regulators

over recommended operating conditions (typical values at TJ = 25°C), application circuit Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SELECTABLE OUTPUT VOLTAGE LDOs: LDO1, LDO2
IQ(LDO12) Quiescent current, either LDO1 or LDO2 enabled, LDO0 disabled IQ(LDO12) = I(VIN_LDO02) I(LDO1,2) = –1 mA 15 μA
I(LDO1,2) = –150 mA 160
IO(LDO1,2) Output current range 150 mA
VO(LDO1,2) LDO1, LDO2 Output Voltage Output voltage, selectable through I2C. Available output voltages: VO(LDO1,2)TYP = 1.25, 1.5, 1.8, 2.5, 2.85, 3, 3.2, 3.3 V
Dropout voltage, 150-mA load 300 mV
Total accuracy, V(VIN_LDO02) = 3.65 V –3% 3%
Line Regulation, 100-mA load,
V(VIN_LDO02): V(LDO1,2)TYP + 0.5 V → 4.7 V
–1% 1%
Load regulation, load: 10 mA → 150 mA
V(VIN_LDO02) > VO(LDO1,2) TYP + 0.5 V
–1.5% 1.5%
PSR(LDO12) PSRR at 20 kHz 150mA load at output, V(VIN_LDO02) – VO(LDO1,2) = 1 V 40 dB
ISC(LDO1,2) LDO1&2 short circuit current limit Output grounded 300 mA
RDCH(LDO1,2) Discharge resistor LDO disabled by I2C command 300 Ω
ILKG(LDO1,2) Leakage current LDO off 2 μA
SIM LINEAR REGULATOR
IQ(SIM) Quiescent current Internally connected to OUT pin 20 μA
IO(SIM) Output current range 8 mA
VO(SIM) SIM LDO output voltage Output voltage, selectable through I2C. Available output voltages:
VO(SIM)TYP = 1.8 or 2.5
V
Dropout voltage, 8-mA load 0.2 V
Total accuracy, V(OUT): 3.2 V to 4.7 V, 8 mA –5% 5%
Load regulation, load: 1 mA → 8 mA, V(OUT) > VO(SIM) TYP + 0.5 V –3% 3%
Line regulation, 5-mA load, V(OUT): VO(SIM) TYP + 0.5 V → 4.7 V –2% 2%
ISC(SIM) Short-circuit current limit Output grounded 20 mA
ILKG(SIM) Leakage current LDO off 1 μA
PROGRAMMABLE OUTPUT VOLTAGE LDOs: LDO3, LDO4, LDO5
IQ(LDO35) Quiescent current, only one of LDO3, LDO4, LDO5 is enabled IQ(LDO35) = I(VIN_LDO35) 70 μA
IO(LDO35) Output current range 100 mA
VO(LDO35) LDO3, LDO4, LDO5 output voltage Output voltage, selectable through I2C
Available output voltages:
VO(LDO35)TYP = 1.224 V to
4.46 V, 25-mV steps
V
Dropout voltage, 100-mA load 240 mV
Total accuracy, 100-mA load V(VIN_LDO35) = 5 V –3% 3%
Load regulation, V(VIN_LDO35) > VO(LDO35)TYP + 0.5 V,
load: 1 mA → 50 mA
–1% 1%
Line regulation, 10-mA load,
V(VIN_LDO35): VO(LDO35)TYP + 0.5 V → 4.7 V
–1% 1%
ISC(LDO35) Short-circuit current limit Output grounded 250 mA
PSR(LDO35) PSRR at 10 kHz V(VIN_LDO35) > VO(LDO3,5) + 1 V, 50-mA load at output 40 dB
RDCH(LDO35) Discharge resistor LDO is disabled by I2C command 400 Ω
ILKG(LDO35) Leakage current LDO off 1 μA
RTC_OUT LINEAR REGULATOR
IQ(RTC_OUT) Quiescent current for RTC LDO Internally connected to OUT pin 20 μA
IO(RTC_OUT) Output current range 8 mA
VO(RTC_OUT) RTC_OUT output voltage Fixed output voltage value 1.5 V
Dropout voltage, I(RTC_OUT) = –8 mA 200 mV
Total accuracy, V(OUT): 2 V to 4.7 V, 8-mA load, sleep mode not set –5% 5%
Load regulation, load: 1 mA → 8 mA,
2 V < V(OUT) < 4.7 V
–3% 3%
Line regulation, 5-mA load, V(OUT): 2 V → 4.7 V –2% 2%
ISH(RTC_OUT) Short-circuit current limit V(RTC_OUT) = 0 V 20 mA
ILKG(RTC_OUT) Leakage current V(RTC_OUT) = 1.5 V, V(OUT) = 0 V TJ = 85°C 880 nA
TJ = 25°C 250
LDO0 LINEAR REGULATOR
IQ(LDO0) Quiescent current Internally connected to
VIN_LDO12 pin
I(LDO0) = –1 mA 15 μA
I(LDO0) = –150 mA 160
IO(LDO0) Output current range 150 mA
VO(LDO0) Output voltage Fixed output voltage value 3.3 V
Dropout voltage, I(LDO0) = –150 mA 300 mV
Total accuracy –3% 3%
Line regulation, V(OUT): VO(LDO0) + 0.5 → 4.7 V,
I(LDO0) = –100 mA
–1% 1%
Load regulation, I(LDO0) = –10 mA → –150 mA –1.5% 1.5%
PSR(LDO0) PSRR at 20 kHz 150-mA load at output, V(VIN_LDO12) – VO(LDO1,2) = 1 V 40 dB
ISC(LDO0) Short circuit current limit V(LDO0) = 0 V 300 mA
ILKG(LDO0) Leakage current LDO off 1 μA
LDO_PM LINEAR REGULATOR
IQ(LD0_PM) Output current range 20 mA
VO(LDO_PM) Output voltage Fixed output voltage value, V(OUT) > 4 V 3.3 V
Dropout voltage, I(LDOPM) = –12 mA 0.5 0.7
Total accuracy –5% 5%
ILKG(LDOPM) Leakage current LDO off 1 μA

7.10 Electrical Characteristics – Switched-Mode SM1 Step-Down Converter

over recommended operating conditions (typical values at TJ = 25°C), VO(SM1) = 1.24 V, application circuit Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IQ(SM1) Quiescent current for SM1 IQ(SM1) = I(VIN_ SM1), no output load, not switching 10 μA
SM1 OFF, set through I2C 0.1
IO(SM1) Output current range Vin = 4.2 V, Vout = 1.24 V (TPS65810) 600 mA
Vin = 4.2 V, Vout = 1.24 V (TPS65811) 750
VO(SM1) Output voltage, PWM mode Output voltage, selectable through I2C, Standby OFF Available output voltages: VO(SM1)TYP = 0.6 V to 1.8 V, adjustable in 40-mV steps V
VO(SM1) = VSBY(SM1), Output voltage range, Standby ON Available output voltages: VSBY(SM1) = 0.6 V to 1.8 V, adjustable in 40-mV steps
Total accuracy, VO(SM1)TYP = VSBY(SM1) = 1.24 V,
V(VIN_SM1) = 3.0 V to 4.7 V; 0 mA ≤ IO(SM1) ≤ 600 mA
–3% 3%
Line Regulation, V(VIN_SM1): 3.0 → 4.70 V,
IO(SM1) = 10 mA
0.027 %/V
Load Regulation, V(VIN_SM1) = 4.7 V,
IO(SM1): 60 mA → 540 mA
0.139 %/A
RDSON(PSM1) P-channel MOSFET ON-resistance V(VIN_SM1) = 3.6 V, 100% duty cycle set 310 500
ILKG(PSM1) P-channel leakage current 0.1 μA
RDSON(NSM1) N-channel MOSFET ON-resistance V(VIN_SM1) = 3.6 V, 0% duty cycle set 220 330
ILKG(PSM1) N-channel leakage current 5 μA
ILIM(SM1) P- and N-channel current limit 3 V < V(VIN_SM1) < 4.7 V (TPS65810) 900 1050 1200 mA
3 V < V(VIN_SM1) < 4.7 V (TPS65811) 1000 1200 1400
fS(SM1) Oscillator frequency PWM mode set 1.3 1.5 1.7 MHz
EFF(SM1) Efficiency V(VIN_SM1) = 4.2 V, PWM mode, IO(SM1) = 300 mA,
VO(SM1) = 3 V
90%
tSS(SM1) Soft-start ramp time Converter OFF→ON, VO(SM1): 5% → 95% of target value 750 μs
tDLY(SM1) Converter turnon delay GPIO1 pin programmed as SM1 converter enable control. Measured from V(GPIO1): LO → HI 170 μs

7.11 Electrical Characteristics – Switched-Mode SM2 Step-Down Converter

over recommended operating conditions (typical values at TJ = 25°C), VO(SM1) = 1.24 V, application circuit Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IQ(SM2) Quiescent current for SM2 IQ(SM2) = I(VIN_ SM2), no output load, not switching 10 μA
SM2 OFF, set through I2C 0.1
IO(SM2) Output current range Vin = 4.2 V, Vout = 1.24 V (TPS65810) 600 mA
Vin = 4.2 V, Vout = 1.24 V (TPS65811) 750
VO(SM2) Output voltage Output voltage, selectable through I2C, stand-by OFF Available output voltages: VO(SM2)TYP = 1 V to 3.4 V, adjustable in 80-mV steps V
VO(SM2) = VSBY(SM2), Output voltage range, stand-by ON Available output voltages: VSBY(SM2) = 1 V to 3.4 V, adjustable in 80-mV steps
Total accuracy, VO(SM2)TYP = VSM2(SBY) = 1.8 V,
V(VIN_SM2) = greater of [3.0 V or (VO(SM2) + 0.3 V)]
to 4.7 V; 0 mA ≤ IO(SM2) ≤ 600 mA
–3% 3%
Line regulation, V(VIN_SM2) = greater of
[3 V or (VO(SM2) + 0.3 V)]
to 4.7 V; 0 mA ≤ IO(SM2) ≤ 600 mA
0.027 %/V
Load regulation, V(VIN_SM2) = 4.7 V,
IO(SM2): 60 mA → 540 mA
0.139 %/A
RDSON(PSM2) P-channel MOSFET ON-resistance V(VIN_SM2) = 3.6 V, 100% duty cycle set 310 500
ILKG(PSM2) P-channel leakage current 0.1 μA
RDSON(NSM2) N-channel MOSFET ON-resistance V(VIN_SM2) = 3.6 V, 0% duty cycle set 220 330
ILKG(PSM2) N-channel leakage current 5 μA
ILIM(SM2) P- and N-channel current limit 3 V < V(VIN_SM2) < 4.7 V (TPS65810) 900 1050 1200 mA
3 V < V(VIN_SM2) < 4.7 V (TPS65811) 1000 1200 1400
fS(SM2) Oscillator frequency PWM mode set 1.3 1.5 1.7 MHz
EFF(SM2) Efficiency V(VIN_SM2) = 4.2 V, IO(SM2) = 300 mA,
VO(SM2) = 3 V
90%
tSS(SM2) Soft-start ramp time Converter OFF→ON, VO(SM2) : 5% → 95% of target value 750 μs
tDLY(SM2) Converter turnon delay GPIO2 pin programmed as SM2 converter enable control. Measured from V(GPIO2): LO → HI 170 μs

7.12 Electrical Characteristics – GPIOs

over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 51 (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
GPIO1–3
VOL Low level output voltage GPIO0 IOL = 20 mA 0.5 V
IOGPIO Low level sink current into GPIO1,2,3 V(GPIOn) = V(OUT) 20 mA
VIL Low level input voltage 0.4 V
ILKG(GPIO) Input leakage current V(GPIOn) = V(OUT) 1 μA

7.13 Electrical Characteristics – ADC

over recommended operating conditions (typical values at TJ = 25°C), V(ADC_REF) =2.535 V if external reference voltage is used, application circuit as in Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
VRNG(CH1_5) Full scale input range Ch1 to Ch5 Positive inputs (active clamp)
Full scale ~ 2.535 V
0 V(ADC_REF) V
VRNG(CH6_8) Full scale input range Ch6 to Ch8 Positive inputs (active clamp), full scale ~4.7 V 0 VINTREF ×1.854 V
CIN(ADC) Input capacitance (all channels) 15 pF
RINADC(CH1_5) Input resistance (Ch1 to Ch5) 1
ILKGADC(CH1_5) Leakage current (Ch1 to Ch5) 100 nA
RINADC(CH6_8) Input resistance (Ch6 to Ch8) 430 540
ILKGADC(CH6_8) Leakage current (Ch6 to Ch8) 10 μA
VCH5(ADC) Internal voltage proportional to junction temperature TJ = 25°C, ADC channel 5 input voltage 1.895 V
Temperature coefficient 6.5 mV/ °C
DC ACCURACY
RES(ADC) Resolution SAR ADC 10 Bits
MCD(ADC) No missing codes SPECIFIED
INL(ADC) Integral linearity error ±3 LSB
DNL(ADC) Differential non-linearity error ±1 LSB
OFFZERO(ADC) Offset error Difference between the first code transition (00...00 to 00...01) and the ideal AGND + 1 LSB 5 LSB
OFFCH(ADC) Offset error match between channels 5 LSB
GAINADC Gain error Deviation in code from the ideal full scale code (11…111) for the full scale voltage ±8 LSB
GAINCH(ADC) Gain error match Any two channels 2 LSB
THROUGHPUT SPEED
ADCCLK Sampling clock 600 750 900 kHz
ADCTCONV Conversion time Sampling, conversion and setting Rs ≤ 200 K for CH1,CH2,CH3; Rs ≤ 500 Ω for CH6, CH7, CH8 44 59 68 μs
REFERENCE VOLTAGES
VINTREF Internal ADC reference voltage TA = 25°C, V(ADC_REF)=VINTREF when internal ADC reference is selected 2.53 2.535 2.54 V
ISHRT(INTREF) Internal reference short circuit limit V(ADC_REF)= AGND1, internal reference enabled through I2C 6 mA
VREF(DRIFT) ADC internal reference temperature drift 50 100 ppm/°C
IQ(ADC) ADC Internal reference quiescent current Measured at OUT pin (internal reference) or ADC_REF pin (external reference) 40 μA
I(ANLG2) ANLG2 pin internal pullup current source ADC channel 2 bias current, set through I2C register ADC_WAIT bits (ADC_CH2I_D1_1, ADC_CH2I _D2) 00 0 μA
01 10
10 50
11 60
Total accuracy, relative to selected value –25% 25%
I(ANLG1) ANLG1 pin internal pullup current source ADC channel 1 bias current, set through I2C register ADC_WAIT bits (BATIDI_D1, BATIDI _D2) 00 TPS65810 TPS65811 typc_vo_lvs606.gif μA
01 10
10 50
11 60
Total accuracy 10% 10%
INTERNAL REFERENCE POWER CONSUMPTION
PDACTIVE Power dissipation Conversion active 2.3 mW
PDARMED Power dissipation Not converting 0.43 mW

7.14 Electrical Characteristics – LED and PWM Drivers

over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SM3 BOOST CONVERTER, WHITE LED CONSTANT CURRENT DRIVER
VVIN(SM3) Input voltage range V(OUT) = 3.3 V 3 4.7 V
VOVP3 Output overvoltage trip OVP detected at V(SM3) > VOVP3 26.5 29 30 V
VHYS(OVP3) Output overvoltage hysteresis OVP not detected at V(SM3) < VOVP3 – VHYS(OVP3) 1.8 V
VSM3REF LED current-sense threshold LED current below regulation point at
V(FB3) < VSM3REF
244 252 260 mV
IO(SM3) LED current Current range, Vin = 3.3 V, TPS65810 TPS65811 tcled_io_lvs606.gif 0 25 mA
Total accuracy, IO(SM3) = 10 mA –10% 10%
DSM3SW LED-switch duty cycle Duty cycle range DSM3SW = 0% to 99.6%, set through I2C,
256 steps, 0.4% minimum step
FREP_SM3 LED-switch duty cycle pattern repetition rate 256 pulses within repetition rate time SM3_LF_OSC = 0 122 Hz
SM3_LF_OSC = 1 183
RDSON(SM3SW) LED switch MOSFET ON-resistance V(OUT) = 3.6 V; I(SM3SW) = 20 mA 1 2 Ω
ILKG(SM3SW) LED switch MOSFET leakage 1 μA
RDSON(L3) Power stage MOSFET ON-resistance V(OUT) = 3.6 V; I(L3) = 200 mA 300 600
ILKG(L3) Power stage MOSFET leakage 1 μA
IMAX(L3) Power stage MOSFET current limit 3 V < V(OUT) < 4.7 V 400 500 600 mA
PWM DRIVER, PWM OPEN-DRAIN OUTPUT
VOL(PWM) Low level output voltage I(PWM) = 150 mA 0.5 V
FPWM PWM driver frequency Frequency range Set through I2C, FPWM = 0.5 / 1 / 1.5 / 2 / 3 / 4.5 / 7.8 / 15.6 Hz
Total accuracy, relative to selected value –20% 20%
DPWM PWM driver duty cycle Duty cycle range DPWM = 6.25% to 100%, set through I2C,
6.25% minimum step
LED_PWM DRIVER, LED_PWM OPEN-DRAIN OUTPUT
DLEDPWM LED_PWM driver duty cycle Duty cycle range DLEDPWM = 0% to 99.6%, set through I2C, 256 steps
0.4% minimum step
FREP(LEDPWM) LED_PWM driver duty cycle pattern repetition rate 256 pulses within repetition rate time SM3_LF_OSC = 0 122 Hz
SM3_LF_OSC = 1 180
VOL(LEDPWM) Low level output voltage I(LED_PWM) = 150 mA 0.5 V
VOH(LEDPWM) High level output voltage 6 V
RGB DRIVER, RED, GREEN, AND BLUE OPEN-DRAIN OUTPUT
tFLASH(RGB) Flashing period Flashing period range tFLASH(RGB) = 1 to 8 sec, set through I2C, 0.5 s minimum step, 8 steps s
Total accuracy –20% 20%
tFLASH(ON) Flash on time Flash on time range, value selectable by I2C Set through I2C, tFLASH(ON) = 0.1 / 0.15 / 0.2 / 0.25 / 0.3 / 0.4 / 0.5 / 0.6 s
Total accuracy relative to selected value –20% 20%
DRGB Duty cycle Duty cycle range, value selectable through I2C DRGB = 0% to 99.98%, set through I2C, 3.23% minimum step
ISINK(RGB) RGB output sink current V(RED) = V(GREEN) = V(BLUE) = 2 V, set through I2C RGB_ISET1,0 00 = (Driver set to OFF) mA
01 2.4 4 5.6
10 4.8 8 11.2
11 7 12 16.6
VOL(RGB) Low-level output voltage Output low voltage, 8-mA load, RED/GREEN/BLUE PINS 0.3 V
ILKG(RGB) Output off leakage current V(RED) = V(GREEN) = V(BLUE) = 4.7 V, all drivers disabled 1 μA

7.15 Electrical Characteristics – I2C Interface

over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 51 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I2C INTERFACE LOGIC LEVELS
VIH High level input voltage 1.3 6 V
VIL Low level input voltage 0 0.6 V
IH Input bias current 0.01 μA

7.16 Timing Requirements – I2C Interface

over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 51 (unless otherwise noted)
MIN MAX UNIT
I2C TIMING CHARACTERISTICS
tR SCLK/SDATA rise time 300 ns
tF SCLK/SDATA fall time 300 ns
tW(H) SCLK pulse width, high 600 ns
tW(L) SCLK pulse width, low 1.3 μs
tSU(STA) Setup time for START condition 600 ns
tH(STA) START condition hold time after which first clock pulse is generated 600 ns
tSU(DAT) Data setup time 100 ns
tH(DAT) Data hold time 0 ns
tSU(STOP) Setup time for STOP condition 600 ns
t(BUF) Bus free time between START and STOP condition 1.3 μs
FSCL Clock Frequency 400 kHz

7.17 Trigger Timing Characteristics

MIN NOM MAX UNIT
tDELAY(TRG) Trigger delay time accuracy Time range, set through I2C register ADC_DELAY 0 750 µs
Relative to typical value set through I2C –20% 20%
tWAIT(TRG) Trigger wait time accuracy Time range, set through I2C register ADC_WAIT 0 20.48 ms
Relative to typical value set through I2C –20% 20%

7.18 Dissipation Ratings

PACKAGE θJA TA ≤ 55°C
POWER RATING
DERATING FACTOR
ABOVE TA = 55°C
RTQ (1) (2) 21.7°C/W 3.22 W 0.046 W/°C
(1) This data is based on using the JEDEC High-K board and the exposed die pad is connected to a Cu pad on the board. This is connected to the ground plane by a via matrix.
(2) The RTQ package MSL level: HIR3 at 260°C
TPS65810 TPS65811 tim_lvs606.gif Figure 1. I2C Timing

7.19 Typical Characteristics

7.19.1 Power Path Management

These curves were measured with application circuit shown in Figure 51 (unless otherwise noted).
TPS65810 TPS65811 acbat_lvs606.gif Figure 2. Switching From AC to Battery on AC Removal
TPS65810 TPS65811 usb2bat_lvs606des.gif Figure 3. Switching From USB to Battery on USB Removal

7.19.2 Linear Regulators 0, 1, 2

These curves were measured with the application circuit shown in Figure 51 (unless otherwise noted).
TPS65810 TPS65811 lo_reg_lvs606.gif Figure 4. Load Regulation vs Junction Temperature
TPS65810 TPS65811 ldo_012_tj_lvs606.gif Figure 6. Output Voltage vs Junction Temperature
TPS65810 TPS65811 lin_reg_lvs606.gif Figure 5. Line Regulation vs Junction Temperature
TPS65810 TPS65811 do_tj_lvs606.gif Figure 7. Dropout Voltage vs Junction Temperature

7.19.3 Linear Regulators 3, 4, 5

These curves were measured with the application circuit shown in Figure 51 (unless otherwise noted).
TPS65810 TPS65811 lo2_reg_lvs606.gif Figure 8. Load Regulation vs Junction Temperature
TPS65810 TPS65811 vo_tj_lvs606.gif Figure 10. Output Voltage vs Junction Temperature
TPS65810 TPS65811 lin2_reg_lvs606.gif Figure 9. Line Regulation vs Junction Temperature
TPS65810 TPS65811 drpo_tj_lvs606.gif Figure 11. Dropout Voltage vs Junction Temperature

7.19.4 SM1 and SM2 Buck Converters

These curves were measured with the application circuit shown in Figure 51 (unless otherwise noted).
TPS65810 TPS65811 eff_io_lvs606.gif Figure 12. Efficiency in Automatic PWM/PFM Mode
TPS65810 TPS65811 pfm_opr_lvs606.gif Figure 14. PFM Operation
TPS65810 TPS65811 eff2_io_lvs606.gif Figure 13. PWM Mode Efficiency vs Output Current
TPS65810 TPS65811 lo_rip_lvs606.gif Figure 15. PFM Low Ripple Operation