SLVSE83B December   2020  – September 2023 TPS6593-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
    1.     5
  5. Revision History
  6. Description (continued)
  7. Pin Configuration and Functions
    1. 6.1 Digital Signal Descriptions
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3)
    6. 7.6  Low Noise Low Drop-Out Regulator (LDO4)
    7. 7.7  Internal Low Drop-Out Regulators (LDOVRTC, LDOVINT)
    8. 7.8  BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators
    9. 7.9  Reference Generator (BandGap)
    10. 7.10 Monitoring Functions
    11. 7.11 Clocks, Oscillators, and PLL
    12. 7.12 Thermal Monitoring and Shutdown
    13. 7.13 System Control Thresholds
    14. 7.14 Current Consumption
    15. 7.15 Backup Battery Charger
    16. 7.16 Digital Input Signal Parameters
    17. 7.17 Digital Output Signal Parameters
    18. 7.18 I/O Pullup and Pulldown Resistance
    19. 7.19 I2C Interface
    20. 7.20 Serial Peripheral Interface (SPI)
    21. 7.21 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  System Supply Voltage Monitor
      2. 8.3.2  Power Resources (Bucks and LDOs)
        1. 8.3.2.1 Buck Regulators
          1. 8.3.2.1.1  BUCK Regulator Overview
          2. 8.3.2.1.2  Multi-Phase Operation and Phase-Adding or Shedding
          3. 8.3.2.1.3  Transition Between PWM and PFM Modes
          4. 8.3.2.1.4  Multi-Phase BUCK Regulator Configurations
          5. 8.3.2.1.5  Spread-Spectrum Mode
          6. 8.3.2.1.6  Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) Support
          7. 8.3.2.1.7  BUCK Output Voltage Setting
          8. 8.3.2.1.8  BUCK Regulator Current Limit
          9. 8.3.2.1.9  SW_Bx Short-to-Ground Detection
          10. 8.3.2.1.10 Sync Clock Functionality
          11.        49
        2. 8.3.2.2 Low Dropout Regulators (LDOs)
          1. 8.3.2.2.1 LDOVINT
          2. 8.3.2.2.2 LDOVRTC
          3. 8.3.2.2.3 LDO1, LDO2, and LDO3
          4. 8.3.2.2.4 Low-Noise LDO (LDO4)
      3. 8.3.3  Output Voltage Monitor and PGOOD Generation
      4. 8.3.4  Thermal Monitoring
        1. 8.3.4.1 Thermal Warning Function
        2. 8.3.4.2 Thermal Shutdown
      5. 8.3.5  Backup Supply Power-Path
      6. 8.3.6  General-Purpose I/Os (GPIO Pins)
      7. 8.3.7  nINT, EN_DRV, and nRSTOUT Pins
      8. 8.3.8  Interrupts
      9. 8.3.9  RTC
        1. 8.3.9.1 General Description
        2. 8.3.9.2 Time Calendar Registers
          1. 8.3.9.2.1 TC Registers Read Access
          2. 8.3.9.2.2 TC Registers Write Access
        3. 8.3.9.3 RTC Alarm
        4. 8.3.9.4 RTC Interrupts
        5. 8.3.9.5 RTC 32-kHz Oscillator Drift Compensation
      10. 8.3.10 Watchdog (WDOG)
        1. 8.3.10.1 Watchdog Fail Counter and Status
        2. 8.3.10.2 Watchdog Start-Up and Configuration
        3. 8.3.10.3 MCU to Watchdog Synchronization
        4. 8.3.10.4 Watchdog Disable Function
        5. 8.3.10.5 Watchdog Sequence
        6. 8.3.10.6 Watchdog Trigger Mode
        7. 8.3.10.7 WatchDog Flow Chart and Timing Diagrams in Trigger Mode
        8.       79
        9. 8.3.10.8 Watchdog Question-Answer Mode
          1. 8.3.10.8.1 Watchdog Q&A Related Definitions
          2. 8.3.10.8.2 Question Generation
          3. 8.3.10.8.3 Answer Comparison
            1. 8.3.10.8.3.1 Sequence of the 2-bit Watchdog Answer Counter
            2. 8.3.10.8.3.2 Watchdog Sequence Events and Status Updates
            3. 8.3.10.8.3.3 Watchdog Q&A Sequence Scenarios
      11. 8.3.11 Error Signal Monitor (ESM)
        1. 8.3.11.1 ESM Error-Handling Procedure
          1. 8.3.11.1.1 Level Mode
          2.        90
          3. 8.3.11.1.2 PWM Mode
            1. 8.3.11.1.2.1 Good-Events and Bad-Events
            2. 8.3.11.1.2.2 ESM Error-Counter
            3. 8.3.11.1.2.3 ESM Start-Up in PWM Mode
            4. 8.3.11.1.2.4 ESM Flow Chart and Timing Diagrams in PWM Mode
            5.         96
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device State Machine
        1. 8.4.1.1 Fixed Device Power FSM
          1. 8.4.1.1.1 Register Resets and NVM Read at INIT State
        2. 8.4.1.2 Pre-Configurable Mission States
          1. 8.4.1.2.1 PFSM Commands
            1. 8.4.1.2.1.1  REG_WRITE_IMM Command
            2. 8.4.1.2.1.2  REG_WRITE_MASK_IMM Command
            3. 8.4.1.2.1.3  REG_WRITE_MASK_PAGE0_IMM Command
            4. 8.4.1.2.1.4  REG_WRITE_BIT_PAGE0_IMM Command
            5. 8.4.1.2.1.5  REG_WRITE_WIN_PAGE0_IMM Command
            6. 8.4.1.2.1.6  REG_WRITE_VOUT_IMM Command
            7. 8.4.1.2.1.7  REG_WRITE_VCTRL_IMM Command
            8. 8.4.1.2.1.8  REG_WRITE_MASK_SREG Command
            9. 8.4.1.2.1.9  SREG_READ_REG Command
            10. 8.4.1.2.1.10 SREG_WRITE_IMM Command
            11. 8.4.1.2.1.11 WAIT Command
            12. 8.4.1.2.1.12 DELAY_IMM Command
            13. 8.4.1.2.1.13 DELAY_SREG Command
            14. 8.4.1.2.1.14 TRIG_SET Command
            15. 8.4.1.2.1.15 TRIG_MASK Command
            16. 8.4.1.2.1.16 END Command
          2. 8.4.1.2.2 Configuration Memory Organization and Sequence Execution
          3. 8.4.1.2.3 Mission State Configuration
          4. 8.4.1.2.4 Pre-Configured Hardware Transitions
            1. 8.4.1.2.4.1 ON Requests
            2. 8.4.1.2.4.2 OFF Requests
            3. 8.4.1.2.4.3 NSLEEP1 and NSLEEP2 Functions
            4. 8.4.1.2.4.4 WKUP1 and WKUP2 Functions
            5. 8.4.1.2.4.5 LP_WKUP Pins for Waking Up from LP STANDBY
        3. 8.4.1.3 Error Handling Operations
          1. 8.4.1.3.1 Power Rail Output Error
          2. 8.4.1.3.2 Catastrophic Error
          3. 8.4.1.3.3 Watchdog (WDOG) Error
          4. 8.4.1.3.4 Warnings
        4. 8.4.1.4 Device Start-up Timing
        5. 8.4.1.5 Power Sequences
        6. 8.4.1.6 First Supply Detection
        7. 8.4.1.7 Register Power Domains and Reset Levels
      2. 8.4.2 Multi-PMIC Synchronization
        1. 8.4.2.1 SPMI Interface System Setup
        2. 8.4.2.2 Transmission Protocol and CRC
          1. 8.4.2.2.1 Operation with Transmission Errors
          2. 8.4.2.2.2 Transmitted Information
        3. 8.4.2.3 SPMI Target Device Communication to SPMI Controller Device
          1. 8.4.2.3.1 Incomplete Communication from SPMI Target Device to SPMI Controller Device
        4. 8.4.2.4 SPMI-BIST Overview
          1. 8.4.2.4.1 SPMI Bus during Boot BIST and RUNTIME BIST
          2. 8.4.2.4.2 Periodic Checking of the SPMI
          3. 8.4.2.4.3 SPMI Message Priorities
    5. 8.5 Control Interfaces
      1. 8.5.1 CRC Calculation for I2C and SPI Interface Protocols
      2. 8.5.2 I2C-Compatible Interface
        1. 8.5.2.1 Data Validity
        2. 8.5.2.2 Start and Stop Conditions
        3. 8.5.2.3 Transferring Data
        4. 8.5.2.4 Auto-Increment Feature
      3. 8.5.3 Serial Peripheral Interface (SPI)
    6. 8.6 Configurable Registers
      1. 8.6.1 Register Page Partitioning
      2. 8.6.2 CRC Protection for Configuration, Control, and Test Registers
      3. 8.6.3 CRC Protection for User Registers
      4. 8.6.4 Register Write Protection
        1. 8.6.4.1 Watchdog and ESM Configuration Registers
        2. 8.6.4.2 User Registers
    7. 8.7 Register Maps
      1. 8.7.1 TPS6593-Q1 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Powering a Processor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 VCCA
          2. 9.2.1.2.2 Internal LDOs
          3. 9.2.1.2.3 Crystal Oscillator
          4. 9.2.1.2.4 Buck Input Capacitors
          5. 9.2.1.2.5 Buck Output Capacitors
          6. 9.2.1.2.6 Buck Inductors
          7. 9.2.1.2.7 LDO Input Capacitors
          8. 9.2.1.2.8 LDO Output Capacitors
          9. 9.2.1.2.9 Digital Signal Connections
      2. 9.2.2 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Device Nomenclature
    3. 10.3 Documentation Support
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Low Noise Low Drop-Out Regulator (LDO4)

Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of the device.
POS PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Electrical Characteristics
2.1a CIN(LDO4) Input filtering capacitance(1) Connected from PVIN_LDO4 to GND, Shared input tank capacitance (depending on platform requirements) 1 2.2 µF
2.1b COUT(LDO4) Output filtering capacitance(2) Connected from VOUT_LDO4 to GND 1 2.2 4 µF
2.1c CESR(LDO4) Input and output capacitor ESR(3) 1 MHz ≤ f ≤ 10 MHz 20
2.1d COUT_TOTAL(LDO4) Total capacitance at output (Local + POL)(4) 1 MHz ≤ f ≤ 10 MHz, fast ramp 15 µF
2.1e 1 MHz ≤ f ≤ 10 MHz, slow ramp 30 µF
2.2 VIN(LDO4) LDO Input voltage 2.2 5.5 V
2.3 VOUT(LDO4) LDO output voltage configurable range with 25-mV steps 1.2 3.3 V
2.5 TDCOV(LDO4) Total DC output voltage accuracy, including voltage references, DC load and line regulations, process and temperature VIN(LDO4) - VOUT(LDO4) > 300 mV –1% 1%
2.7 IOUT(LDO4) Output current VIN(LDO4)min ≤ VIN(LDO4) ≤ VIN(LDO4)max 300 mA
2.8 ISHORT(LDO4) LDO current limit 400 900 mA
2.9 IIN_RUSH(LDO4) LDO inrush current VIN = 3.3V when LDO is enabled 650 mA
2.13a PSRR(LDO4) Power supply ripple rejection f = 1 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300 mA 70 dB
2.13b f = 10 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300 mA 70
2.13c f = 100 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300 mA 62
2.13d f = 1 MHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300 mA 15
2.12a RDIS(LDO4) Pulldown discharge resistance at LDO output Active only when converter is disabled, LDO4_PLDN = '00' 35 50 65
2.12b Active only when converter is disabled, LDO4_PLDN = '01' 60 125 200 Ω
2.12c Active only when converter is disabled, LDO4_PLDN = '10' 120 250 400 Ω
2.12d Active only when converter is disabled, LDO4_PLDN= '11' 240 500 800 Ω
2.14 IQoff(LDO4) Leakage current in off mode For all LDO regulators, VCCA = VIN(LDO4) = 3.8 V, TJ = 25℃ 2 µA
2.15 IQon(LDO4) Quiescent current ILOAD = 0 mA ,LDO4 under valid operating conditionTJ = 25℃ 40 µA
2.16 TLDR(LDO4) Transient load regulation, ΔVOUT VIN(LDO4) = 3.3V, VOUT(LDO4) = 2.80V, IOUT = 20% of IOUT_MAX to 80% of IOUT_MAX in 1us, COUT(LDO4) = 2.2uF –25 25 mV
2.17 TLNR(LDO4) Transient line regulation,
ΔVOUT / VOUT
On mode, not under dropout condition, VIN step = 600 mVPP, tr = tf = 10 µs -25 25 mV
2.18 VNOISE(LDO4) RMS Noise 100 Hz < f ≤ 100 kHz, VIN = 3.3 V, VOUT = 1.8 V, IOUT = 300 mA 15 µVRMS
2.19 VTH_SC_RV(LDO4) Threshold voltage for Short Circuit LDO4_EN = 0 140 150 160 mV
Timing Requirements
19.11a tSTART(LDO4) Start Time Time from completion of enable command to output voltage at 0.5 V 150 µs
19.12a1 tRAMP(LDO4) Ramp Time Measured from 0.5 V to 90% of LDO4_VSET.  LDO4_SLOW_RAMP = 0 350 µs
19.12a2 Measured from 0.5 V to 90% of LDO4_VSET.  LDO4_SLOW_RAMP = 1 2.3 ms
19.12b tRAMP_SLEW(LDO4) Ramp up slew rate VOUT from 0.5 V to 90% of LDO4_VSET. LDO4_SLOW_RAMP = 0 27 mV/µs
19.12c VOUT from 0.5 V to 90% of LDO4_VSET. LDO4_SLOW_RAMP = 1 3 mV/µs
19.13a tdelay_OC(LDO4) Over-current detection delay Detection signal delay when IOUT > ILIM 35 µs
19.13b tdeglitch_OC(LDO4) Over-current detection signal deglitch time Digital deglitch time for the over-current detection signal 38 44 µs
19.14 tlatency_OC(LDO4) Over-current signal total latency time Total delay from Iout > ILIM to interrupt or PFSM trigger 79 µs
Input capacitors must be placed as close as possible to the device pins.
When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of the capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the outputs of regulators.
Ceramic capacitors recommended
Additional capacitance, including local and POL, beyond the specified value can cause the LDO to become unstable