SLVSGW5A November   2022  – January 2024 TPS92620-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Power Supply (SUPPLY)
        1. 6.3.1.1 Power-On Reset (POR)
        2. 6.3.1.2 Suppply Current in Fault Mode
      2. 6.3.2  Enable and Shutdow(EN)
      3. 6.3.3  Constant-Current Output and Setting (INx)
      4. 6.3.4  Thermal Sharing Resistor (OUTx and RESx)
      5. 6.3.5  PWM Control (PWMx)
      6. 6.3.6  Supply Control
      7. 6.3.7  Diagnostics
        1. 6.3.7.1 LED Short-to-GND Detection
        2. 6.3.7.2 LED Open-Circuit Detection
        3. 6.3.7.3 LED Open-Circuit Detection Enable (DIAGEN)
        4. 6.3.7.4 Overtemperature Protection
        5. 6.3.7.5 Low Dropout Operation
      8. 6.3.8  FAULT Bus Output With One-Fails-All-Fail
      9. 6.3.9  FAULT Table
      10. 6.3.10 LED Fault Summary
      11. 6.3.11 IO Pins Inner Connection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Undervoltage Lockout, V(SUPPLY) < V(POR_rising)
      2. 6.4.2 Normal Operation V(SUPPLY) ≥ 4.5V
      3. 6.4.3 Low-Voltage Dropout Operation
      4. 6.4.4 Fault Mode
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 BCM Controlled Rear Lamp With One-Fails-All-Fail Setup
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Independent PWM Controlled Rear Lamp By MCU
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS92620-Q1 is a two-channel, high-side linear LED driver supporting external thermal sharing resistor to achieve the controllable junction temperature rising. The device can be directly powered by automotive battery and output full load up to 500mA current to LED with limited power dissipation on the device. The current output at each channel can be independently set by external R(SNSx) resistors. Current flows from the supply through the R(SNSx) resistor into the integrated current regulation circuit and to the LEDs through OUTx pin and RESx pin. TPS92620-Q1 device supports both supply control and EN/PWM control to turn LED ON and OFF. The LED brightness is also adjustable by voltage duty cycle applied on either SUPPLY or EN/PWM pins with frequency above 100Hz. The TPS92620-Q1 provides full diagnostics to keep the system operating reliably including LED open and short-circuit detection, supply POR and thermal shutdown protection. The TPS92620-Q1 can be used with other TPS9261x-Q1, TPS9262x-Q1, TPS9263x-Q1 and TPS92830-Q1 family devices together to achieve one-fails-all-fail protection by tying all FAULT pins together as a fault bus.