SLVSHS7 October   2024 TPSI31P1-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics
    10. 5.10 Switching Characteristics
    11. 5.11 Insulation Characteristic Curves
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Transmission of the Enable State
      2. 6.3.2 Power Transmission
      3. 6.3.3 Gate Driver
      4. 6.3.4 Chip Enable (CE)
      5. 6.3.5 Comparators
      6. 6.3.6 VDDP, VDDH, and VDDM Under-voltage Lockout (UVLO)
      7. 6.3.7 Keep-off Circuitry
      8. 6.3.8 Thermal Shutdown
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 CDIV1, CDIV2 Capacitance
      3. 7.2.3 Application Curves
      4. 7.2.4 Insulation Lifetime
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
  • DVX|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The TPSI31P1-Q1 is designed to be used in automotive pre-charge systems as an alternative to traditional passive pre-charge architectures that typically include costly electromechanical relays (EMR), along with bulky, high power resistors. The TPSI31P1-Q1, combined with external power switches, power inductor and diode, forms an active pre-charge solution. The inductor current is continuously monitored and controlled in a hysteretic mode of operation by the TPSI31P1-Q1 to linearly charge the large capacitance of the downstream system. The TPSI31P1-Q1 is an isolated switch driver that generates its own secondary bias supply from power received on its primary side, therefore no isolated secondary supply is required. With a gate drive voltage of 17V with 1.5A and 2.5A peak source and sink current, a large availability of power switches can be used including SiC FET and IGBT.

The TPSI31P1-Q1 integrates a communication back-channel that transfers status information from the secondary side to the primary side via open-drain output, PGOOD (Power Good) and indicates when the secondary power is valid.

The TPSI31P1-Q1 reinforced isolation is extremely robust with much higher reliability, lower power consumption, and increased temperature ranges than those found in optocouplers. Replacing the EMR and power resistor with a solid state solution can lead to reduced cost and form factor, while providing higher reliability.

Package Information
PART NUMBER PACKAGE(1) PACKAGE SIZE(2)
TPSI31P1-Q1(3) DVX (SSOP, 16) 5.85mm ×10.3mm
For all available packages, see the orderable addendum at the end of the data sheet.
The package size (length × width) is a nominal value and includes pins, where applicable.
Product preview.