SNVSCB1C December   2022  – February 2024 TPSM33615 , TPSM33625

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range
      2. 7.3.2  Output Voltage Selection
      3. 7.3.3  Input Capacitors
      4. 7.3.4  Output Capacitors
      5. 7.3.5  Enable, Start-Up, and Shutdown
      6. 7.3.6  External CLK SYNC (with MODE/SYNC)
        1. 7.3.6.1 Pulse-Dependent MODE/SYNC Pin Control
      7. 7.3.7  Switching Frequency (RT)
      8. 7.3.8  Power-Good Output Operation
      9. 7.3.9  Internal LDO, VCC and VOUT/FB Input
      10. 7.3.10 Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      11. 7.3.11 Spread Spectrum
      12. 7.3.12 Soft Start and Recovery from Dropout
        1. 7.3.12.1 Recovery from Dropout
      13. 7.3.13 Overcurrent Protection (Hiccup Mode)
      14. 7.3.14 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 CCM Mode
        2. 7.4.3.2 Auto Mode – Light-Load Operation
          1. 7.4.3.2.1 Diode Emulation
          2. 7.4.3.2.2 Frequency Reduction
        3. 7.4.3.3 FPWM Mode – Light-Load Operation
        4. 7.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 7.4.3.5 Dropout
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Choosing the Switching Frequency
        3. 8.2.2.3  Setting the Output Voltage
        4. 8.2.2.4  Input Capacitor Selection
        5. 8.2.2.5  Output Capacitor Selection
        6. 8.2.2.6  VCC
        7. 8.2.2.7  CFF Selection
        8. 8.2.2.8  Power Good Signal
        9. 8.2.2.9  Maximum Ambient Temperature
        10. 8.2.2.10 Other Connections
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Ground and Thermal Considerations
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
      3. 9.1.3 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power-Good Output Operation

The power-good feature using the PGOOD pin of the TPSM336x5 can be used to reset a system microprocessor whenever the output voltage is out of regulation. This open-drain output remains low under device fault conditions, such as current limit and thermal shutdown, as well as during normal start-up. A glitch filter prevents false flag operation for any short duration excursions in the output voltage, such as during line and load transients. Output voltage excursions lasting less than tRESET_FILTER do not trip the power-good flag. Power-good operation can best be understood in reference to Figure 7-10. Table 7-7 gives a more detailed breakdown of the PGOOD operation. Here, VPGUV is defined as the PGUV scaled version of VOUT (target regulated output voltage) and VPGHYS as the PGHYS scaled version of VOUT, where both PGUV and PGHYS are listed in Electrical Characteristics. During the initial power up, a total delay of 6 ms (typical) is encountered from the time VEN_RISE is triggered to the time that the power-good is flagged high. This delay only occurs during the device start-up and is not encountered during any other normal operation of the power-good function. When EN is pulled low, the power-good flag output is also forced low. With EN low, power-good remains valid as long as the input voltage (VIN_PG_VALID is ≥ 1.5 V (max)).

The power-good output scheme consists of an open-drain n-channel MOSFET, which requires an external pullup resistor connected to a suitable logic supply. It can also be pulled up to either VCC or VOUT through an appropriate resistor, as desired. If this function is not needed, the PGOOD pin can be open or grounded. Limit the current into this pin to ≤ 4 mA.

GUID-20220831-SS0I-SFCC-37FV-7CMNP2JQCB4L-low.svg Figure 7-10 Power-Good Operation (OV Events Not Included)
Table 7-7 Fault Conditions for PGOOD (Pull Low)
FAULT CONDITION INITIATEDFAULT CONDITION ENDS (AFTER WHICH tPGOOD_ACT MUST PASS BEFORE PGOOD OUTPUT IS RELEASED)
VOUT < VPGUV AND t > tRESET_FILTEROutput voltage in regulation:
VPGUV + VPGHYS < VOUT < VPGOV - VPGHYS
VOUT > VPGOV AND t > tRESET_FILTEROutput voltage in regulation
TJ > TSDNTJ < TSDN-THYST AND output voltage in regulation
EN < VEN_RISE - VEN_HYSEN > VEN_RISE AND output voltage in regulation