SNVSC83B September   2022  – February 2023 TPSM365R3 , TPSM365R6

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics
    6. 8.6  System Characteristics
    7. 8.7  Typical Characteristics
    8. 8.8  Typical Characteristics: VIN = 12 V
    9. 8.9  Typical Characteristics: VIN = 24 V
    10. 8.10 Typical Characteristics: VIN = 48 V
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Input Voltage Range
      2. 9.3.2  Output Voltage Selection
      3. 9.3.3  Input Capacitors
      4. 9.3.4  Output Capacitors
      5. 9.3.5  Enable, Start-Up, and Shutdown
      6. 9.3.6  External CLK SYNC (with MODE/SYNC)
        1. 9.3.6.1 Pulse-Dependent MODE/SYNC Pin Control
      7. 9.3.7  Switching Frequency (RT)
      8. 9.3.8  Power-Good Output Operation
      9. 9.3.9  Internal LDO, VCC UVLO, and BIAS Input
      10. 9.3.10 Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      11. 9.3.11 Spread Spectrum
      12. 9.3.12 Soft Start and Recovery from Dropout
        1. 9.3.12.1 Recovery from Dropout
      13. 9.3.13 Overcurrent Protection (OCP)
      14. 9.3.14 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Shutdown Mode
      2. 9.4.2 Standby Mode
      3. 9.4.3 Active Mode
        1. 9.4.3.1 CCM Mode
        2. 9.4.3.2 AUTO Mode - Light Load Operation
          1. 9.4.3.2.1 Diode Emulation
          2. 9.4.3.2.2 Frequency Reduction
        3. 9.4.3.3 FPWM Mode - Light Load Operation
        4. 9.4.3.4 Minimum On-time (High Input Voltage) Operation
      4. 9.4.4 Dropout
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 600-mA and 300-mA Synchronous Buck Regulator for Industrial Applications
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 10.2.1.2.2  Output Voltage Setpoint
          3. 10.2.1.2.3  Switching Frequency Selection
          4. 10.2.1.2.4  Input Capacitor Selection
          5. 10.2.1.2.5  Output Capacitor Selection
          6. 10.2.1.2.6  VCC
          7. 10.2.1.2.7  CFF Selection
          8. 10.2.1.2.8  Power-Good Signal
          9. 10.2.1.2.9  Maximum Ambient Temperature
          10. 10.2.1.2.10 Other Connections
        3. 10.2.1.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
        1. 10.4.1.1 Ground and Thermal Considerations
      2. 10.4.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
      3. 11.1.3 Development Support
        1. 11.1.3.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Dropout

Dropout operation is defined as any input-to-output voltage ratio that requires frequency to drop to achieve the required duty cycle. At a given clock frequency, duty cycle is limited by the minimum off-time. After this limit is reached as shown in #T4915986-105 if clock frequency was to be maintained, the output voltage can fall. Instead of allowing the output voltage to drop, the TPSM365Rx extends the high side switch on-time past the end of the clock cycle until the needed peak inductor current is achieved. The clock is allowed to start a new cycle after peak inductor current is achieved or after a pre-determined maximum on-time, tON-MAX, of approximately 9 µs passes. As a result, after the needed duty cycle cannot be achieved at the selected clock frequency due to the existence of a minimum off-time, frequency drops to maintain regulation. As shown in #T4915986-104 if input voltage is low enough so that output voltage cannot be regulated even with an on-time of tON-MAX, output voltage drops to slightly below the input voltage by VDROP. For additional information on recovery from dropout, refer back to GUID-CFCDC1C7-E61E-45E0-B6BD-229661834025.html#GUID-CFCDC1C7-E61E-45E0-B6BD-229661834025.

Output voltage and frequency versus input voltage: If there is little difference between input voltage and output voltage setting, the IC reduces frequency to maintain regulation. If input voltage is too low to provide the desired output voltage at approximately 110 kHz, input voltage tracks output voltage.
Figure 9-17 Frequency and Output Voltage in Dropout
Switching waveforms while in dropout. Inductor current takes longer than a normal clock to reach the desired peak value. As a result, frequency drops. This frequency drop is limited by tON-MAX.
Figure 9-18 Dropout Waveforms