SNVSC83B September   2022  – February 2023 TPSM365R3 , TPSM365R6

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics
    6. 8.6  System Characteristics
    7. 8.7  Typical Characteristics
    8. 8.8  Typical Characteristics: VIN = 12 V
    9. 8.9  Typical Characteristics: VIN = 24 V
    10. 8.10 Typical Characteristics: VIN = 48 V
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Input Voltage Range
      2. 9.3.2  Output Voltage Selection
      3. 9.3.3  Input Capacitors
      4. 9.3.4  Output Capacitors
      5. 9.3.5  Enable, Start-Up, and Shutdown
      6. 9.3.6  External CLK SYNC (with MODE/SYNC)
        1. 9.3.6.1 Pulse-Dependent MODE/SYNC Pin Control
      7. 9.3.7  Switching Frequency (RT)
      8. 9.3.8  Power-Good Output Operation
      9. 9.3.9  Internal LDO, VCC UVLO, and BIAS Input
      10. 9.3.10 Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      11. 9.3.11 Spread Spectrum
      12. 9.3.12 Soft Start and Recovery from Dropout
        1. 9.3.12.1 Recovery from Dropout
      13. 9.3.13 Overcurrent Protection (OCP)
      14. 9.3.14 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Shutdown Mode
      2. 9.4.2 Standby Mode
      3. 9.4.3 Active Mode
        1. 9.4.3.1 CCM Mode
        2. 9.4.3.2 AUTO Mode - Light Load Operation
          1. 9.4.3.2.1 Diode Emulation
          2. 9.4.3.2.2 Frequency Reduction
        3. 9.4.3.3 FPWM Mode - Light Load Operation
        4. 9.4.3.4 Minimum On-time (High Input Voltage) Operation
      4. 9.4.4 Dropout
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 600-mA and 300-mA Synchronous Buck Regulator for Industrial Applications
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 10.2.1.2.2  Output Voltage Setpoint
          3. 10.2.1.2.3  Switching Frequency Selection
          4. 10.2.1.2.4  Input Capacitor Selection
          5. 10.2.1.2.5  Output Capacitor Selection
          6. 10.2.1.2.6  VCC
          7. 10.2.1.2.7  CFF Selection
          8. 10.2.1.2.8  Power-Good Signal
          9. 10.2.1.2.9  Maximum Ambient Temperature
          10. 10.2.1.2.10 Other Connections
        3. 10.2.1.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
        1. 10.4.1.1 Ground and Thermal Considerations
      2. 10.4.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
      3. 11.1.3 Development Support
        1. 11.1.3.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

System Characteristics

The following specifications apply only to the typical applications circuit, with nominal component values. Specifications in the typical (TYP) column apply to TJ = 25°C only. Specifications in the minimum (MIN) and maximum (MAX) columns apply to the case of typical components over the temperature range of TJ = –40°C to 125°C. These specifications are not ensured by production testing.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY VOLTAGE (VIN)
ISUPPLY Input supply current when in regulation VIN = 13.5 V, VBIAS = 3.3-V VOUT, IOUT = 0 A, PFM mode (fixed output voltage) 6.5 µA
ISUPPLY Input supply current when in regulation VIN = 24 V, VBIAS = 3.3-V VOUT, IOUT = 0 A, FPWM mode (fixed output voltage) 4 µA
DMAX Maximum switch duty cycle (1) 98 %
VOLTAGE REFERENCE (FB or BIAS)
VOUT_5p0V_ACC VOUT = 5 V, VIN = 5.5 V to 65 V, IOUT = 0 A to full load (2) FPWM mode –1.5 1.5 %
VOUT_5p0V_ACC VOUT = 5 V, VIN = 5.5 V to 65 V, IOUT = 0 A to full load (2) Auto mode –1.5 2.5 %
VOUT_3p3V_ACC VOUT = 3.3 V, VIN = 3.6 V to 65 V, IOUT = 0 A to full load (2) FPWM mode –1.5 1.5 %
VOUT_3p3V_ACC VOUT = 3.3 V, VIN = 3.6 V to 65 V, IOUT = 0 A to full load (2) Auto mode –1.5 2.5 %
SPREAD SPECTRUM
fSSS Frequency span of spread
spectrum operation - largest
deviation from center frequency (3)
Spread spectrum active ±2 %
fPSS Spread spectrum pseudo random pattern frequency (3) 0.98 1.5 Hz
EFFICIENCY
η Efficiency VIN = 12 V, VOUT = 3.3 V, IOUT = 0.6 A, FSW = 1 MHz 82.7 %
η Efficiency VIN = 24 V, VOUT = 3.3 V, IOUT = 0.6 A, FSW = 1 MHz 80.2 %
η Efficiency VIN = 24 V, VOUT = 5 V, IOUT = 0.6 A, FSW = 1 MHz 84.7 %
η Efficiency VIN = 36 V, VOUT = 5 V, IOUT = 0.6 A, FSW = 1 MHz 82.3 %
η Efficiency VIN = 24 V, VOUT = 12 V, IOUT = 0.4 A, FSW = 2.2 MHz 88.4 %
η Efficiency VIN = 48 V, VOUT = 12 V, IOUT = 0.4 A, FSW = 2.2 MHz 78.5 %
THERMAL SHUTDOWN
TSD-R Thermal shutdown rising Shutdown threshold 158 168 180 °C
TSD-F Thermal shutdown falling Recovery threshold 150 158 165 °C
TSD-HYS Thermal shutdown hysteresis 8 10 15 °C
In dropout the switching frequency drops to increase the effective duty cycle. The lowest frequency is clamped at approximately: fMIN = 1 / (tON-MAX + TOFF-MIN). DMAX = tON-MAX /(tON-MAX + tOFF-MIN).
Deviation is with respect to VIN = 13.5 V
Specified by design. Not production tested.