SLVSG72 September   2021 TPSM560R6H

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics (VIN = 12 V)
    7. 6.7 Typical Characteristics (VIN = 24 V)
    8. 6.8 Typical Characteristics (VIN = 48 V)
    9. 6.9 Typical Characteristics (VIN = 60 V)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Adjustable Output Voltage (FB)
      2. 7.3.2 Minimum Input Capacitance
      3. 7.3.3 Minimum Output Capacitance
      4. 7.3.4 Precision Enable (EN), Undervoltage Lockout (UVLO), and Hysteresis (HYS)
      5. 7.3.5 Power Good (PGOOD)
      6. 7.3.6 Overcurrent Protection (OCP)
      7. 7.3.7 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Active Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Shutdown Mode
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Output Voltage Setpoint
        3. 8.2.2.3 Input Capacitor Selection
        4. 8.2.2.4 Output Capacitor Selection
        5. 8.2.2.5 Power-Good Signal
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Theta JA Versus PCB Area
      2. 10.2.2 Package Specifications
      3. 10.2.3 EMI
        1. 10.2.3.1 EMI Plots
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Adjustable Output Voltage (FB)

The TPSM560R6H has an adjustable output voltage range from 1.0 V to 16 V. Setting the output voltage requires two resistors, RFBT and RFBB (see Figure 7-1). Connect RFBT between VOUT at the regulation point and the FB pin. Connect RFBB between the FB pin and AGND (pin 10). The recommended value of RFBT is 10 kΩ. The value for RFBB can be calculated using Equation 1.

Equation 1. GUID-B2E1C974-5B75-419D-AB74-183422B75598-low.gif
GUID-C5304C5A-A561-449B-B9ED-DC07B4DE92C9-low.gifFigure 7-1 FB Resistor Divider
Table 7-1 Standard RFBB Values
VOUT (V)RFBB (kΩ) (1)VOUT (V)RFBB (kΩ) (1)
1.0open3.34.32
1.249.95.02.49
1.520.07.51.54
1.812.4101.10
2.010.0120.909
2.56.65150.715
3.04.99160.665
RFBT = 10 kΩ

Select an RFBT value of 10 kΩ for most applications. A larger RFBT value consumes less DC current, which is mandatory if light-load efficiency is critical. However, RFBT larger than 1 MΩ is not recommended because the feedback path becomes more susceptible to noise. High feedback resistance generally requires more careful layout of the feedback path. It is important to keep the feedback trace as short as possible while keeping the feedback trace away from the noisy area of the PCB. For more layout recommendations, see Section 10.