SLVSG66 November   2022 TPSM82902

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Mode Selection and Device Configuration (MODE/S-CONF)
      2. 7.3.2 Adjustable VO Operation (External Voltage Divider)
      3. 7.3.3 Setable VO Operation (VSET and Internal Voltage Divider)
      4. 7.3.4 Soft Start/Tracking (SS/TR)
      5. 7.3.5 Smart Enable with Precise Threshold
      6. 7.3.6 Power Good (PG)
      7. 7.3.7 Undervoltage Lockout (UVLO)
      8. 7.3.8 Current Limit And Short Circuit Protection
      9. 7.3.9 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Pulse Width Modulation (PWM) Operation
      2. 7.4.2 AEE (Automatic Efficiency Enhancement)
      3. 7.4.3 Power Save Mode Operation (Auto PFM/PWM)
      4. 7.4.4 100% Duty-Cycle Operation
      5. 7.4.5 Output Discharge Function
      6. 7.4.6 Starting into a Pre-Biased Load
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application with Adjustable Output Voltage
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Programming the Output Voltage
        3. 8.2.2.3 Capacitor Selection
          1. 8.2.2.3.1 Output Capacitor
          2. 8.2.2.3.2 Input Capacitor
          3. 8.2.2.3.3 Soft-Start Capacitor
        4. 8.2.2.4 Tracking Function
      3. 8.2.3 Application Curves
    3. 8.3 Typical Application with Setable VO Using VSET
      1. 8.3.1 Design Requirements
      2. 8.3.2 Detailed Design Procedure
      3. 8.3.3 Application Curves
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
        1. 8.5.2.1 Thermal Considerations
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Output Capacitor

The recommended value for the output capacitor is 22 µF. Output capacitance above 100 µF needs to have a ESR of ≥ 10 mΩ for stable operation. The architecture of the TPSM82902 allows the use of tiny ceramic output capacitors with low equivalent series resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low resistance up to high frequencies and to get narrow capacitance variation with temperature, use X7R or X5R dielectric. Using a higher value has advantages like smaller voltage ripple and a tighter DC output accuracy in power save mode (see the Optimizing the TPS62130/40/50/60 Output Filter application report).

In power save mode, the output voltage ripple depends on the output capacitance, its ESR, ESL, and the peak inductor current. Using ceramic capacitors provides small ESR, ESL, and low ripple. The output capacitor needs to be as close as possible to the device.

For large output voltages, the DC bias effect of ceramic capacitors is large and the effective capacitance must be observed.