SBOSA52B november   2022  – august 2023 TRF0206-SP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Quality Conformance Inspection
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Fully Differential Amplifier
      2. 7.3.2 Single-Supply Operation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-Down Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Driving a High-Speed ADC
      2. 8.1.2 Calculating Output Voltage Swing
      3. 8.1.3 Thermal Considerations
    2. 8.2 Typical Application
      1. 8.2.1 TRF0206-SP Driving an AFE7950-SP Receiver
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Considerations

The TRF0206-SP is packaged in a 6.10 mm × 6.20 mm LCCC-FC package that has excellent thermal properties. Connect the device thermal pad to a ground plane. Short the ground plane to the other ground pins of the device at four corners, if possible, to allow heat propagation to the top layer of the PCB. Use a thermal via that connects the thermal pad plane on the top layer of the PCB to the inner layer ground planes to allow heat propagation to the inner layers.

Limit the total power dissipation to keep the device junction temperature less than 150°C for instantaneous power and less than 125°C for continuous power.