SBOS971 December   2023 TRF1305B2

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics - TRF1305B2
    6. 6.6 Typical Characteristics - TRF1305B2
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Fully Differential Amplifier
      2. 7.3.2 Output Common-Mode Control
      3. 7.3.3 Internal Resistor Configuration
    4. 7.4 Device Functional Modes
      1. 7.4.1 MODE Pin
        1. 7.4.1.1 Input Common-Mode Extension
      2. 7.4.2 Power-Down Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Input and Output Interface Considerations
        1. 8.1.1.1 Single-Ended Input
        2. 8.1.1.2 Differential Input
        3. 8.1.1.3 DC Coupling Considerations
      2. 8.1.2 Gain Adjustment With External Resistors in a Differential Input Configuration
    2. 8.2 Typical Application
      1. 8.2.1 TRF1305x2 as ADC Driver in a Zero-IF Receiver
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Supply Voltages
      2. 8.3.2 Single-Supply Operation
      3. 8.3.3 Split-Supply Operation
      4. 8.3.4 Supply Decoupling
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Thermal Considerations
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RYP|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Single-Ended Input

In the single-ended input configuration, one of the amplifier input pins is driven from a source while the other input is terminated with an external resistor. Figure 8-1 shows an ac-coupled, single-ended input configuration driven from and matched to a 50-Ω source. Figure 8-1 shows how the non-driven INM pin is terminated with a 50-Ω external resistor to match to a source with the same 50-Ω impedance at the INP pin. The shown configuration works for all gain versions of TRF1305x2.

To configure the design in Figure 8-1 for single-ended, dc-coupled input, replace the ac-coupling capacitors with shorts, and externally bias both INP and INM pins to a voltage close to the mid-supply or within the common-mode limits of the amplifier.

GUID-20220923-SS0I-GW77-ZCPQ-FN0JWB9SQS4F-low.svg Figure 8-1 AC-Coupled, Single-Ended Input Matched to a 50 Ω Source