SLWS213A January   2010  – November 2015 TRF370417

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 RF Output Parameters
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Baseband Common-Mode Voltage
      2. 7.4.2 LO Drive Level
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Basic Connections
        1. 8.1.1.1 ESD Sensitivity
      2. 8.1.2 GSM Applications
      3. 8.1.3 WCDMA Applications
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 DAC-to-Modulator Interface Network
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage range –0.3 6 V
TJ Operating virtual junction temperature range –40 150 °C
TA Operating ambient temperature range –40 85 °C
Tstg Storage temperature range –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±75 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±75
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Power-supply voltage 4.5 5 5.5 V

6.4 Thermal Information

THERMAL METRIC(1) TRF370417 UNIT
RGE (VQFN)
24 PINS
RθJA Junction-to-ambient thermal resistance (High-K board, still air) 29.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 18.6 °C/W
RθJB Junction-to-board thermal resistance 14 °C/W
ψJT Junction-to-top characterization parameter °C/W
ψJB Junction-to-board characterization parameter °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DC Parameters
ICC Total supply current (1.7 V CM) TA = 25°C 205 245 mA
LO Input (50-Ω, Single-Ended)
fLO LO frequency range 0.05 6 GHz
LO input power –5 0 12 dBm
LO port return loss 15 dB
Baseband Inputs
VCM I and Q input dc common voltage 1.7
BW 1-dB input frequency bandwidth 1 GHz
ZI(single ended) Input impedance, resistance 5
Input impedance, parallel capacitance 3 pF

6.6 RF Output Parameters

over recommended operating conditions, power supply = 5 V, TA = 25°C, VCM = 1.7 V, VinBB = 98 mVrms single-ended in quadrature, fBB = 50 kHz (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fLO = 70 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage –8 dB
P1dB Output compression point 7.3 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 22 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 69 dBm
Carrier feedthrough Unadjusted –46 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –27.5 dBc
fLO = 400 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage –1.9 dB
P1dB Output compression point 11 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 24.5 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 68 dBm
Carrier feedthrough Unadjusted –38 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –40 dBc
fLO = 945.6 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage –2.5 dB
P1dB Output compression point 11 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 25 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 65 dBm
Carrier feedthrough Unadjusted –40 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –42 dBc
Output return loss 9 dB
Output noise floor ≥13 MHz offset from fLO; Pout = –5 dBm –161.2 dBm/Hz
fLO = 1800 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage –2.5 dB
P1dB Output compression point 12 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 26 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 60 dBm
Carrier feedthrough Unadjusted –40 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –50 dBc
Output return loss 8 dB
Output noise floor ≥13 MHz offset from fLO; Pout = –5 dBm –161.5 dBm/Hz
fLO = 1960 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage –2.5 dB
P1dB Output compression point 12 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 26.5 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 60 dBm
Carrier feedthrough Unadjusted –38 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –50 dBc
Output return loss 8 dB
Output noise floor ≥13 MHz offset from fLO; Pout = –5 dBm –162 dBm/Hz
EVM Error vector magnitude (rms) 1 EDGE signal, Pout = –5 dBm(1) 0.43%
ACPR Adjacent-channel power ratio 1 WCDMA signal; Pout = –8 dBm(3) –76 dBc
1 WCDMA signal; Pout = –8 dBm(2) –74
2 WCDMA signals; Pout = –11 dBm per carrier(2) –68
4 WCDMA signals; Pout = –14 dBm per carrier(2) –67
Alternate-channel power ratio 1 WCDMA signal; Pout = –8 dBm(3) –80 dBc
1 WCDMA signal; Pout = –8 dBm(2) –78
2 WCDMA signals; Pout = –11 dBm per carrier(2) –72
4 WCDMA signals; Pout = –14 dBm per carrier(2) –69
fLO = 2140 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage –2.4 dB
P1dB Output compression point 12 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 26.5 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 66 dBm
Carrier feedthrough Unadjusted –38 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –50 dBc
Output return loss 8.5 dB
Output noise floor ≥13 MHz offset from fLO ; Pout = –5 dBm –162.3 dBm/Hz
ACPR Adjacent-channel power ratio 1 WCDMA signal; Pout = –8 dBm(3) –76 dBc
1 WCDMA signal; Pout = –8 dBm(2) –72
2 WCDMA signal; Pout = –11 dBm per carrier(2) –67
4 WCDMA signals; Pout = –14 dBm per carrier(2) –66
Alternate-channel power ratio 1 WCDMA signal; Pout = –8 dBm(3) –80 dBc
1 WCDMA signal; Pout = –8 dBm(2) –78
2 WCDMA signal; Pout = –11 dBm(2) –74
4 WCDMA signals; Pout = –14 dBm per carrier(2) –68
fLO = 2500 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage –1.6 dB
P1dB Output compression point 13 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 29 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone 65 dBm
Carrier feedthrough Unadjusted –37 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –47 dBc
EVM Error vector magnitude (rms) WiMAX 5-MHz carrier, Pout = –8 dBm(4) –47 dB
WiMAX 5-MHz carrier, Pout = 0 dBm(4) –45 dB
fLO = 3500 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage 0.6 dB
P1dB Output compression point 13.5 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz 25 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz 65 dBm
Carrier feedthrough Unadjusted –35 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –36 dBc
EVM Error vector magnitude (rms) WiMAX 5-MHz carrier, Pout = –8 dBm(4) –47 dB
WiMAX 5-MHz carrier, Pout = 0 dBm(4) –43 dB
fLO = 4000 MHz at 8 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage 0.2 dB
P1dB Output compression point 12 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz 22.5 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz 60 dBm
Carrier feedthrough Unadjusted –36 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –36 dBc
fLO = 5800 MHz at 4 dBm
G Voltage gain Output rms voltage over input I (or Q) rms voltage –5.5 dB
P1dB Output compression point 12.9 dBm
IP3 Output IP3 fBB = 4.5, 5.5 MHz 25 dBm
IP2 Output IP2 fBB = 4.5, 5.5 MHz 55 dBm
Carrier feedthrough Unadjusted –31 dBm
Sideband suppression Unadjusted; fBB = 4.5, 5.5 MHz –36 dBc
EVM Error-vector magnitude WiMAX 5-MHz carrier, Pout = –12 dBm(4) –40 dB
(1) The contribution from the source of about 0.28% is not de-embedded from the measurement.
(2) Measured with DAC5687 as source generator; no external BB filters are used.
(3) Measured with DAC5687 as source generator; with 2.5 MHz LPF.
(4) Sideband suppression optimized with LO drive level; EVM contribution from instrument is not accounted for.

6.7 Typical Characteristics

VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50 kHz (unless otherwise noted).
TRF370417 g001_lws213.gif Figure 1. Output Power vs Baseband Voltage
TRF370417 g003_lws213.gif Figure 3. Output Power vs Frequency and Supply Voltage
TRF370417 g005_lws213.gif Figure 5. P1dB vs Frequency and Temperature
TRF370417 g007_lws213.gif Figure 7. P1dB vs Frequency and LO Power
TRF370417 g009_lws213.gif Figure 9. OIP3 vs Frequency and Supply Voltage
TRF370417 g012_lws213.gif Figure 11. OIP2 vs Frequency and Supply Voltage
TRF370417 g014_lws213.gif Figure 13. Unadjusted Carrier Feedthrough vs Frequency and Temperature
TRF370417 g016_lws213.gif Figure 15. Unadjusted Carrier Feedthrough vs Frequency and LO Power
TRF370417 g018_lws213.gif Figure 17. Unadjusted Sideband Suppression vs Frequency and Supply Voltage
TRF370417 g020_lws213.gif Figure 19. Noise at 13-MHz Offset (dBm/Hz) vs Frequency and Temperature
TRF370417 g022_lws213.gif Figure 21. Noise at 13-MHz Offset (dBm/Hz) vs Output Power
TRF370417 g024_lws213.gif Figure 23. Adjusted Carrier Feedthrough vs Frequency and Temperature
TRF370417 g026_lws213.gif Figure 25. Adjusted Carrier Feedthrough vs Frequency and Temperature
TRF370417 g028_lws213.gif Figure 27. Adjusted Carrier Feedthrough vs Frequency and Temperature
TRF370417 g030_lws213.gif Figure 29. Adjusted Sideband Supression vs Frequency and Temperature
TRF370417 g032_lws213.gif Figure 31. Adjusted Sideband Supression vs Frequency and Temperature
TRF370417 g034_lws213.gif Figure 33. Adjusted Sideband Supression vs Frequency and Temperature
TRF370417 g036_lws213.gif Figure 35. OIP3 vs Common-Mode Voltage at 1800 MHz
TRF370417 g038_lws213.gif Figure 37. OIP3 vs Common-Mode Voltage at 5800 MHz
TRF370417 g042_lws213.gif OIP3 at 1960 MHz Distribution
TRF370417 g044_lws213.gif Unadjusted Carrier Feedthrough at 1960 MHz Distribution
TRF370417 g046_lws213.gif P1dB at 1800 MHz Distribution
TRF370417 g002_lws213.gif Figure 2. Output Power vs Frequency and Temperature
TRF370417 g004_lws213.gif Figure 4. Output Power vs Frequency and LO Power
TRF370417 g006_lws213.gif Figure 6. P1dB vs Frequency and Supply Voltage
TRF370417 g008_lws213.gif Figure 8. OIP3 vs Frequency and Temperature
TRF370417 g011_lws213.gif Figure 10. OIP2 vs Frequency and Temperature
TRF370417 g013_lws213.gif Figure 12. OIP2 vs Frequency and LO POWER
TRF370417 g015_lws213.gif Figure 14. Unadjusted Carrier Feedthrough vs Frequency and Supply Voltage
TRF370417 g017_lws213.gif Figure 16. Unadjusted Sideband Suppression vs Frequency and Temperature
TRF370417 g019_lws213.gif Figure 18. Unadjusted Sideband Suppression vs Frequency and LO Power
TRF370417 g021_lws213.gif Figure 20. Noise at 13-MHz Offset (dBm/Hz) vs Frequency and Supply Voltage
TRF370417 g023_lws213.gif Figure 22. Adjusted Carrier Feedthrough vs Frequency and Temperature
TRF370417 g025_lws213.gif Figure 24. Adjusted Carrier Feedthrough vs Frequency and Temperature
TRF370417 g027_lws213.gif Figure 26. Adjusted Carrier Feedthrough vs Frequency and Temperature
TRF370417 g029_lws213.gif Figure 28. Adjusted Sideband Supression vs Frequency and Temperature
TRF370417 g031_lws213.gif Figure 30. Adjusted Sideband Supression vs Frequency and Temperature
TRF370417 g033_lws213.gif Figure 32. Adjusted Sideband Supression vs Frequency and Temperature
TRF370417 g035_lws213.gif Figure 34. OIP3 vs Common-Mode Voltage at 948.5 MHz
TRF370417 g037_lws213.gif Figure 36. OIP3 vs Common-Mode Voltage at 2140 MHz
TRF370417 g039_lws213.gif Figure 38. OIP3 vs Total Output Power
TRF370417 g043_lws213.gif OIP2 at 1960 MHz Distribution
TRF370417 g045_lws213.gif Unadjusted Sideband Suppression at 1960 MHz Distribution