SLOSEC9 September   2024 TSD5402-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements for I2C Interface Signals
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input and Preamplifier
      2. 6.3.2 Pulse-Width Modulator (PWM)
      3. 6.3.3 Gate Drive
      4. 6.3.4 Power FETs
      5. 6.3.5 Load Diagnostics
        1. 6.3.5.1 Load Diagnostics Sequence
        2. 6.3.5.2 Faults During Load Diagnostics
      6. 6.3.6 Protection and Monitoring
      7. 6.3.7 I2C Serial Communication Bus
        1. 6.3.7.1 I2C Bus Protocol
        2. 6.3.7.2 Random Write
        3. 6.3.7.3 Random Read
        4. 6.3.7.4 Sequential Read
    4. 6.4 Device Functional Modes
      1. 6.4.1 Hardware Control Pins
      2. 6.4.2 EMI Considerations
      3. 6.4.3 Operating Modes and Faults
  8. Register Maps
    1. 7.1 I2C Address Register Definitions
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Amplifier Output Filtering
        2. 8.2.1.2 Amplifier Output Snubbers
        3. 8.2.1.3 Bootstrap Capacitors
        4. 8.2.1.4 Analog Signal Input Filter
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Unused Pin Connections
          1. 8.2.2.1.1 HI-Z Pin
          2. 8.2.2.1.2 STANDBY Pin
          3. 8.2.2.1.3 I2C Pins (SDA and SCL)
          4. 8.2.2.1.4 Terminating Unused Outputs
          5. 8.2.2.1.5 Using a Single-Ended Signal Input
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
        1. 8.4.2.1 Top Layer
        2. 8.4.2.2 Second Layer – Signal Layer
        3. 8.4.2.3 Third Layer – Power Layer
        4. 8.4.2.4 Bottom Layer – Ground Layer
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
      1. 11.1.1 Packaging Information
      2. 11.1.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Protection and Monitoring

  • Overcurrent Shutdown (OCSD)—The overcurrent shutdown forces the output into Hi-Z. The device asserts the FAULT pin and updates the I2C register.
  • DC Detect—This circuit checks for a dc offset continuously during normal operation at the output of the amplifier. If a dc offset occurs, the device asserts the FAULT pin and updates the I2C register. Note that the dc detection threshold follows PVDD changes.
  • Overtemperature Shutdown (OTSD)—The device shuts down when the die junction temperature reaches the overtemperature threshold. The device asserts the FAULT pin asserts and updates I2C register. Recovery is automatic when the temperature returns to a safe level.
  • Undervoltage (UV)—The undervoltage (UV) protection detects low voltages on PVDD. In the event of an undervoltage condition, the device asserts the FAULT pin and resets the I2C register.
  • Power-On Reset (POR)—Power-on reset (POR) occurs when PVDD drops below the POR threshold. A POR event causes the I2C bus to go into a high-impedance state. After recovery from the POR event, the device restarts automatically with default I2C register settings.
  • Overvoltage (OV) and Load Dump—OV protection detects high voltages on PVDD. If PVDD reaches the overvoltage threshold, the device asserts the FAULT pin and updates the I2C register. The device can withstand 40-V load-dump voltage spikes. The device supports load-dump in both standby and active modes.
  • Power Guard—This protection circuitry limits the output voltage to the value selected in I2C register 0x03. This value determines both the positive and negative limits. The user can use the Power Guard feature to improve battery life or protect the load from exceeding its excursion limits.
  • Adjacent-Pin Shorts—The device design is such that shorts between adjacent pins do not cause damage.