SLLSFP2 September   2024 TUSB1021-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 USB 3.2
      2. 7.3.2 4-Level Inputs
      3. 7.3.3 Receiver Linear Equalization
    4. 7.4 Device Functional Modes
      1. 7.4.1 USB 3.2 2:1 MUX Description
      2. 7.4.2 Linear EQ Configuration
      3. 7.4.3 USB3.2 Modes
      4. 7.4.4 Operation Timing – Power Up
    5. 7.5 Programming
      1. 7.5.1 TUSB1021-Q1 I2C Target Behavior
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 ESD Protection
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Register Maps
    1. 9.1 General Register (address = 0x0A) [reset = 00000001]
    2. 9.2 USB3.2 Control/Status Registers (address = 0x20) [reset = 00000000]
    3. 9.3 USB3.2 Control/Status Registers (address = 0x21) [reset = 00000000]
    4. 9.4 USB3.2 Control/Status Registers (address = 0x22) [reset = 00000000]
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

  1. Reroute the RXP/N and TXP/N with controlled 90Ω differential impedance (±15%).
  2. Keep away from other high speed signals.
  3. Keep the intra-pair routing to within 2 mils.
  4. Place length matching near the location of mismatch.
  5. Separate each pair by at least 3 times the signal trace width.
  6. Keep the use of bends in differential traces to a minimum. When bends are used, make sure to keep the number of left and right bends as equal as possible and the angle of the bend ≥ 135 degrees. This minimizes any length mismatch causes by the bends and therefore minimizes the impact bends have on EMI.
  7. Route all differential pairs on the same of layer.
  8. Keep the number of vias to a minimum. TI recommends to keep the via count to 2 or less.
  9. Keep traces on layers adjacent to ground plane.
  10. Do NOT route differential pairs over any plane split.
  11. Note that adding test points can cause impedance discontinuity, and therefore negatively impact signal performance. If test points are used, place the points in series and symmetrically. The points must not be placed in a manner that causes a stub on the differential pair.