SLLSEI0E July   2015  – July 2024 TUSB4020BI

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings #GUID-E9510BAC-794F-43CD-A047-0D0FFB7C50BE/ABSMAXNOTE
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 3.3V I/O Electrical Characteristics
    6. 5.6 Hub Input Supply Current
    7. 5.7 Power-Up Timing Requirements
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Battery Charging Features
      2. 6.3.2 USB Power Management
      3. 6.3.3 Clock Generation
      4. 6.3.4 Power-Up and Reset
    4. 6.4 Device Functional Modes
      1. 6.4.1 External Configuration Interface
    5. 6.5 Programming
      1. 6.5.1 One-Time Programmable (OTP) Configuration
      2. 6.5.2 I2C EEPROM Operation
      3. 6.5.3 SMBus Target Operation
    6. 6.6 Register Maps
      1. 6.6.1 Configuration Registers
        1. 6.6.1.1  ROM Signature Register (offset = 0h) [reset = 0h]
        2. 6.6.1.2  Vendor ID LSB Register (offset = 1h) [reset = 51h]
        3. 6.6.1.3  Vendor ID MSB Register (offset = 2h) [reset = 4h]
        4. 6.6.1.4  Product ID LSB Register (offset = 3h) [reset = 25h]
        5. 6.6.1.5  Product ID MSB Register (offset = 4h) [reset = 80h]
        6. 6.6.1.6  Device Configuration Register (offset = 5h) [reset = 1Xh]
        7. 6.6.1.7  Battery Charging Support Register (offset = 6h) [reset = 0Xh]
        8. 6.6.1.8  Device Removable Configuration Register (offset = 7h) [reset = 0Xh]
        9. 6.6.1.9  Port Used Configuration Register (offset = 8h) [reset = 0h]
        10. 6.6.1.10 PHY Custom Configuration Register (offset = 9h) [reset = 0h]
        11. 6.6.1.11 Device Configuration Register 2 (offset = Ah)
        12. 6.6.1.12 UUID Registers (offset = 10h to 1Fh)
        13. 6.6.1.13 Language ID LSB Register (offset = 20h)
        14. 6.6.1.14 Language ID MSB Register (offset = 21h)
        15. 6.6.1.15 Serial Number String Length Register (offset = 22h)
        16. 6.6.1.16 Manufacturer String Length Register (offset = 23h)
        17. 6.6.1.17 Product String Length Register (offset = 24h)
        18. 6.6.1.18 Serial Number Registers (offset = 30h to 4Fh)
        19. 6.6.1.19 Manufacturer String Registers (offset = 50h to 8Fh)
        20. 6.6.1.20 Product String Registers (offset = 90h to CFh)
        21. 6.6.1.21 Additional Feature Configuration Register (offset = F0h)
        22. 6.6.1.22 Charging Port Control Register (offset = F2h)
        23. 6.6.1.23 Device Status and Command Register (offset = F8h)
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Crystal Requirements
      2. 7.1.2 Input Clock Requirements
    2. 7.2 Typical Applications
      1. 7.2.1 Upstream Port Implementation
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Downstream Port 1 Implementation
      3. 7.2.3 Downstream Port 2 Implementation
      4. 7.2.4 VBUS Power Switch Implementation
      5. 7.2.5 Clock, Reset, and Miscellaneous
      6. 7.2.6 Power Implementation
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 Power Supply
      2. 7.3.2 Downstream Port Power
      3. 7.3.3 Ground
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Placement
        2. 7.4.1.2 Package Specific
        3. 7.4.1.3 Differential Pairs
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power-Up and Reset

The TUSB4020BI does not have specific power sequencing requirements with respect to the VDD or VDD33 power rails. The VDD or VDD33 power rails can be powered up for an indefinite period of time while the other is not powered up if all of these constraints are met:

  • All maximum ratings and recommended operating conditions are observed.
  • All warnings about exposure to maximum rated and recommended conditions are observed, particularly junction temperature. These apply to power transitions as well as normal operation.
  • Bus contention while VDD33 is powered-up must be limited to 100 hours over the projected lifetime of the device.
  • Bus contention while VDD33 is powered-down can violate the absolute maximum ratings.

A supply bus is powered up when the voltage is within the recommended operating range. A supply bus is powered down when the supply is below that range, either stable or in transition.

A minimum reset duration of 3ms is required, which is defined as the time when the power supplies are in the recommended operating range to the deassertion of GRSTz. This can be generated using programmable-delay supervisory device or using an RC circuit.