SLUS336A June   1998  – December 2016 UC1854 , UC2854 , UC3854

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Protection Inputs
        2. 9.2.2.2 Control Inputs
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Related Links
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DW|16
  • N|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)(4)(5)
MIN MAX UNIT
Supply voltage VCC 35 V
Input Voltage VSENSE, VRMS 11 V
ISENSE, MULTOUT 11
PKLMT 5
Gate driver current Input current 50% duty cycle 1.5 A
Continuous 0.5
Input current RSET, IAC, PKLMT, ENA 10 mA
Power dissipation 1 W
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages with respect to GND.
All currents are positive into the specified terminal.
ENA input is internally clamped to approximately 14 V.
Consult Unitrode Integrated Circuits databook for information regarding thermal specifications and limitations.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VCC Supply voltage 10 20
TJ Operating junction temperature UC1854 –55 125 °C
UC2854 –40 85
UC3854 0 70

Thermal Information

THERMAL METRIC(1) UCx854 UNIT
DW (SOIC) FN (PLCC) J (CDIP) N (PDIP)
16 PINS 20 PINS 16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 71.5 25 40.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 32.7 26.8 °C/W
RθJB Junction-to-board thermal resistance 36.3 5.5 20.9 °C/W
ψJT Junction-to-top characterization parameter 6.8 2.1 10.9 °C/W
ψJB Junction-to-board characterization parameter 35.8 5.4 20.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.4 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metricsapplication report.

Electrical Characteristics

Unless otherwise stated, VCC = 18 V, RSET = 15 kΩ to ground, CT = 1.5 nF to ground, VPKLMT = 1 V, VENA = 7.5 V,
VRMS = 1.5 V, IAC = 100 µA, VISENSE = 0 V, VCAOUT = 3.5 V, VVAOUT = 5 V, VSENSE = 7.5 V, no load on SS, CAOUT, VAOUT, VREF, GTDRV, TA = TJ, TA = –55°C to 125°C for the UC1854, TA = –40°C to 85°C for the UC2854,
and TA = 0°C to 70°C for the UC3854.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OVERALL
Supply current, OFF VENA = 0 V 1.5 2 mA
Supply current, ON 10 16 mA
VCC turn-on threshold 14.5 16 17.5 V
VCC turn-off threshold 9 10 11 V
ENA threshold, rising 2.4 2.55 2.7 V
ENA threshold hysteresis 0.2 0.25 0.3 V
ENA input current VENA = 0 V –5 –0.2 5 µA
VRMS input current VRMS = 5 V –1 –0.01 1 µA
VOLTAGE AMPLIFIER
Voltage amplifier offset voltage VVAOUT = 5 V –8 8 mV
VSENSE bias current –500 –25 500 nA
Voltage amplifier gain 70 100 dB
Voltage amplifier output swing 0.5 5.8 V
Voltage amplifier short circuit current VVAOUT = 0 V –36 –20 –5 mA
SS current VSS = 2.5 V –20 –14 –6 µA
CURRENT AMPLIFIER
Current amplifier offset voltage –4 4 mV
ISENSE bias current –500 –120 500 nA
Input range (ISENSE, MULTOUT) –0.3 2.5 V
Current amplifier gain 80 110 dB
Current amplifier output swing 0.5 16 V
Current amplifier short-circuit current VCAOUT = 0 V –36 –20 –5 mA
Current amplifier gain–bandwidth product TA = 25°C(2) 400 800 kHz
REFERENCE
Reference output voltage IREF = 0 mA, TA = 25°C 7.4 7.5 7.6 V
Reference output voltage IREF = 0 mA, over temperature 7.35 7.5 7.65 V
VREF load regulation –10 mA < IREF < 0 mA –15 5 15 mV
VREF line regulation 15 V < VCC < 35 V –10 2 10 mV
VREF short circuit current VREF = 0 V –50 –28 –12 mA
MULTIPLIER
Multiplier out current IAC limited IAC = 100 µA, RSET = 10 kΩ, VRMS = 1.25 V –220 –200 –180 µA
Multiplier out current zero IAC = 0 µA, RSET = 15 kΩ –2 –0.2 –2 µA
Multiplier out current RSET limited IAC = 450 µA, RSET = 15 kΩ, VRMS = 1 V,
VVAOUT = 6 V
–280 –255 –220 µA
Multiplier out current IAC = 50 µA, VRMS = 2 V, VVAOUT = 4 V –50 –42 –33 µA
Multiplier out current IAC = 100 µA, VRMS = 2 V, VVAOUT = 2 V –38 –27 –12 µA
Multiplier out current IAC = 200 µA, VRMS = 2 V, VVAOUT = 4 V –165 –150 –105 µA
Multiplier out current IAC = 300 µA, VRMS = 1 V, VVAOUT = 2 V –250 –225 –150 µA
Multiplier out current IAC = 100 µA, VRMS = 1 V, VVAOUT = 2 V –95 –80 –60 µA
Multiplier gain constant See (1) –1 V
OSCILLATOR
Oscillator frequency RSET = 15 kΩ 46 55 62 kHz
Oscillator frequency RSET = 8.2 kΩ 86 102 118 kHz
CT ramp peak-to-valley amplitude 4.9 5.4 5.9 V
CT ramp valley voltage 0.8 1.1 1.3 V
GATE DRIVER (GTDRV)
Maximum gate driver output voltage 0-mA load on gate driver, 18 V < VCC < 35 V 13 14.5 18 V
Gate driver output voltage high –200-mA load on gate driver, VCC = 15 V 12 12.8 V
Gate driver output voltage low, OFF VCC = 0 V, 50-mA load on gate driver 0.9 1.5 V
Gate driver output voltage low 200-mA load on gate driver 1 2.2 V
Gate driver output voltage low 10-mA load on gate driver 0.1 0.4 V
Peak Gate driver current 10 nF from gate driver to GND 1 A
Gate driver rise and fall time 1 nF from gate driver to GND 35 ns
Gate driver maximum duty cycle VCAOUT = 7 V 95%
CURRENT LIMIT
PKLMT offset voltage –10 10 mV
PKLMT input current VPKLMT = –0.1 V –200 –100 µA
PKLMT to gate driver delay VPKLMT falling from 50 to –50 mV 175 ns
Multiplier gain constant (k) is defined by: UC1854 UC2854 UC3854 eq1_gain_slus336.gif
Specified by design. Not production tested.

Typical Characteristics

TA = TJ = 25°C
UC1854 UC2854 UC3854 cur_amp_gain_vs_freq_SLUS336.gif Figure 1. Current Amplifier Gain and Phase vs Frequency
UC1854 UC2854 UC3854 gate_dri_max_duty_cyc_SLUS336.gif
Figure 3. Gate-Drive Maximum Duty Cycle
UC1854 UC2854 UC3854 mul_out_vs_mul_inp_1_SLUS336.gif
VMULTOUT = 0 V
Figure 5. Multiplier Output vs Multiplier Inputs
UC1854 UC2854 UC3854 mul_out_vs_mul_inp_3_SLUS336.gif
VMULTOUT = 0 V
Figure 7. Multiplier Output vs Multiplier Inputs
UC1854 UC2854 UC3854 vol_amp_gain_vs_freq_SLUS336.gif Figure 2. Voltage Amplifier Gain and Phase vs Frequency
UC1854 UC2854 UC3854 mul_out_vs_vol_on_mult_SLUS336.gif Figure 4. Multiplier Output vs Voltage On MULTOUT
UC1854 UC2854 UC3854 mul_out_vs_mul_inp_2_SLUS336.gif
VMULTOUT = 0 V
Figure 6. Multiplier Output vs Multiplier Inputs
UC1854 UC2854 UC3854 mul_out_vs_mul_inp_4_SLUS336.gif
VMULTOUT = 0 V
Figure 8. Multiplier Output vs Multiplier Inputs