SLUSD43B august   2020  – may 2023 UCC21710

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety Limiting Values
    9. 6.9  Electrical Characteristics
    10. 6.10 Switching Characteristics
    11. 6.11 Insulation Characteristics Curves
    12. 6.12 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Propagation Delay
      1. 7.1.1 Non-Inverting and Inverting Propagation Delay
    2. 7.2 Input Deglitch Filter
    3. 7.3 Active Miller Clamp
      1. 7.3.1 Internal Active Miller Clamp
    4. 7.4 Under Voltage Lockout (UVLO)
      1. 7.4.1 VCC UVLO
      2. 7.4.2 VDD UVLO
    5. 7.5 OC (Over Current) Protection
      1. 7.5.1 OC Protection with Soft Turn-OFF
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Power Supply
      2. 8.3.2  Driver Stage
      3. 8.3.3  VCC and VDD Undervoltage Lockout (UVLO)
      4. 8.3.4  Active Pulldown
      5. 8.3.5  Short Circuit Clamping
      6. 8.3.6  Internal Active Miller Clamp
      7. 8.3.7  Overcurrent and Short Circuit Protection
      8. 8.3.8  Soft Turn-off
      9. 8.3.9  Fault ( FLT, Reset and Enable ( RST/EN)
      10. 8.3.10 Isolated Analog to PWM Signal Function
    4. 8.4 Device Functional Modes
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input filters for IN+, IN- and RST/EN
        2. 9.2.2.2 PWM Interlock of IN+ and IN-
        3. 9.2.2.3 FLT, RDY and RST/EN Pin Circuitry
        4. 9.2.2.4 RST/EN Pin Control
        5. 9.2.2.5 Turn on and turn off gate resistors
        6. 9.2.2.6 Overcurrent and Short Circuit Protection
          1. 9.2.2.6.1 Protection Based on Power Modules with Integrated SenseFET
          2. 9.2.2.6.2 Protection Based on Desaturation Circuit
          3. 9.2.2.6.3 Protection Based on Shunt Resistor in Power Loop
        7. 9.2.2.7 Isolated Analog Signal Sensing
          1. 9.2.2.7.1 Isolated Temperature Sensing
          2. 9.2.2.7.2 Isolated DC Bus Voltage Sensing
        8. 9.2.2.8 Higher Output Current Using an External Current Buffer
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Insulation Specifications

PARAMETERTEST CONDITIONSVALUEUNIT
GENERAL
CLR External clearance(1) Shortest terminal-to-terminal distance through air > 8 mm
CPG External creepage(1) Shortest terminal-to-terminal distance across the package surface > 8 mm
DTI Distance through the insulation Minimum internal gap (Internal clearance) of the double insulation (2 × 0.0085 mm) > 17 µm
CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 > 600 V
Material group According to IEC 60664–1 I
Overvoltage Category per IEC 60664–1 Rated mains voltage ≤ 300 VRMS I-IV
Rated mains voltage ≤ 600 VRMS I-IV
Rated mains voltage ≤ 1000 VRMS I-III
DIN EN IEC 60747-17 (VDE 0884-17)(2)
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar) 2121 VPK
VIOWM Maximum isolation working voltage AC voltage (sine wave) Time dependent dielectric breakdown (TDDB) test 1500 VRMS
DC voltage 2121 VDC
VIMP Maximum impulse voltage Tested in air, 1.2/50-μs waveform per IEC 62368-1 8000 VPK
VIOTM Maximum transient isolation voltage VTEST=VIOTM, t = 60 s (qualification test) 8000 VPK
VTEST=1.2 x VIOTM, t = 1 s (100% production test)
VIOSM Maximum surge isolation voltage(3) Test method per IEC 62368-1, 1.2/50 µs waveform, VTEST = 1.6 × VIOSM = 12800 VPK (qualification) 8000 VPK
qpd Apparent charge(4) Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 2545 VPK, tm = 10 s ≤ 5 pC
Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 3394 VPK, tm = 10 s ≤ 5
Method b1: At routine test (100% production) and preconditioning (type test) Vini = VIOTM, tini = 1 s; Vpd(m) = 1.875 × VIORM = 3977 VPK, tm = 1 s ≤ 5
CIO Barrier capacitance, input to output(5) VIO = 0.5 sin (2πft), f = 1 MHz ~ 1 pF
RIO Insulation resistance, input to output(5) VIO = 500 V, TA = 25°C ≥ 1012 Ω
VIO = 500 V, 100°C ≤ TA ≤ 125°C ≥ 1011
VIO = 500 V at TS = 150°C ≥ 109
Pollution degree 2
Climatic category 40/125/21
UL 1577
VISO Withstand isolation voltage VTEST = VISO = 5700 VRMS, t = 60 s (qualification); VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production) 5700 VRMS
Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such as inserting grooves and ribs on the PCB are used to help increase these specifications.
This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
Apparent charge is electrical discharge caused by a partial discharge (pd).
All pins on each side of the barrier tied together creating a two-terminal device